
Package ‘BadRegionFinder’
November 4, 2025

Type Package

Title BadRegionFinder: an R/Bioconductor package for identifying
regions with bad coverage

Version 1.39.0

Date 2016-03-07

Author Sarah Sandmann

Maintainer Sarah Sandmann <sarah.sandmann@uni-muenster.de>

Description BadRegionFinder is a package for identifying regions with
a bad, acceptable and good coverage in sequence alignment data
available as bam files. The whole genome may be considered as
well as a set of target regions. Various visual and textual
types of output are available.

License LGPL-3

Imports VariantAnnotation, Rsamtools, biomaRt, GenomicRanges,
S4Vectors, utils, stats, grDevices, graphics

Suggests BSgenome.Hsapiens.UCSC.hg19

biocViews Coverage, Sequencing, Alignment, WholeGenome, Classification

NeedsCompilation no

git_url https://git.bioconductor.org/packages/BadRegionFinder

git_branch devel

git_last_commit d483500

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2025-11-04

Contents
BadRegionFinder-package . 2
determineCoverage . 4
determineCoverageQuality . 6

1

2 BadRegionFinder-package

determineQuantiles . 8
determineRegionsOfInterest . 9
plotDetailed . 11
plotSummary . 13
plotSummaryGenes . 14
reportBadRegionsDetailed . 16
reportBadRegionsGenes . 19
reportBadRegionsSummary . 21

Index 24

BadRegionFinder-package

BadRegionFinder: an R/Bioconductor package for identifying regions
with bad coverage

Description

BadRegionFinder is a package for identifying regions with a bad, acceptable and good coverage in
sequence alignment data available as bam files. The whole genome may be considered as well as a
set of target regions. Various visual and textual types of output are available.

Details

This package was not yet installed at build time.
In the use case of targeted sequencing it is most important to design the set of used primers in a way
that the targeted regions are sequenced with a sufficient coverage. Yet, due to e.g. high GC-content
the aimed at coverage may not always be obtained. Thus, a tool performing a detailed coverage
analysis comparing many samples at a time – and not considering all available samples individually
– appears to be most useful. Furthermore, with regards to reads mapping off target, it seems helpful
to have a tool for investigating those regions, which show a relatively high coverage, but which
were not originally targeted.

BadRegionFinder is a package for classifying a selection of regions or the whole genome into the
user-definable categories of bad, acceptable and good coverage in any sequence alignment data
available as bam files. Various visual and textual types of output are available including detailed
output files considering every base that is or should be covered and an overview file considering the
coverage of the different genes that were targeted.

Index: This package was not yet installed at build time.
The package contains a function performing the coverage determination - determineCoverage
(switch for whole-genome- and target region analyses). The actual classification of the coverage is
performed by the function determineCoverageQuality. If any subsets of regions are of interest,
these may be selected by the function determineRegionsOfInterest.

There are three different forms of textual reports available: a summary variant (reportBadRegionsSummary),
a detailed variant (reportBadRegionsDetailed) and a summary variant focussing on the coverage
of the genes (reportBadRegionsGenes).

BadRegionFinder-package 3

Furthermore, there exist three different forms of visual reports: a summary variant (plotSummary),
a detailed variant (plotDetailed) and a summary variant visualizing the coverage of the genes as
a barplot (plotSummaryGenes).

Additionally, BadRegionFinder may be used to determine user-definable, basewise quantiles over
all samples at any position (determineQuantiles).

Author(s)

Sarah Sandmann

Maintainer: Sarah Sandmann <sarah.sandmann@uni-muenster.de>

References

More information on the bam format can be found at: http://samtools.github.io/hts-specs/
SAMv1.pdf

See Also

determineCoverage, determineCoverageQuality, determineRegionsOfInterest, reportBadRegionsSummary,
reportBadRegionsDetailed, reportBadRegionsGenes, plotSummary, plotDetailed, plotSummaryGenes,
determineQuantiles

Examples

library("BSgenome.Hsapiens.UCSC.hg19")

threshold1 <- 20
threshold2 <- 100
percentage1 <- 0.80
percentage2 <- 0.90
sample_file <- system.file("extdata", "SampleNames.txt",

package = "BadRegionFinder")
samples <- read.table(sample_file)
bam_input <- system.file("extdata", package = "BadRegionFinder")
output <- system.file("extdata", package = "BadRegionFinder")
target_regions <- system.file("extdata", "targetRegions.bed",

package = "BadRegionFinder")
targetRegions <- read.table(target_regions, header = FALSE,

stringsAsFactors = FALSE)

coverage_summary <- determineCoverage(samples, bam_input, targetRegions,
output, TRonly = FALSE)

coverage_indicators <- determineCoverageQuality(threshold1, threshold2,
percentage1, percentage2,
coverage_summary)

badCoverageSummary <- reportBadRegionsSummary(threshold1, threshold2,
percentage1, percentage2,
coverage_indicators, "", output)

coverage_indicators_temp <- reportBadRegionsDetailed(threshold1, threshold2,
percentage1, percentage2,
coverage_indicators, "",

http://samtools.github.io/hts-specs/SAMv1.pdf
http://samtools.github.io/hts-specs/SAMv1.pdf

4 determineCoverage

samples, output)
badCoverageOverview <- reportBadRegionsGenes(threshold1, threshold2, percentage1,

percentage2, badCoverageSummary,
output)

plotSummary(threshold1, threshold2, percentage1, percentage2,
badCoverageSummary, output)

plotDetailed(threshold1, threshold2, percentage1, percentage2,
coverage_indicators_temp, output)

plotSummaryGenes(threshold1, threshold2, percentage1, percentage2,
badCoverageOverview, output)

quantiles <- c(0.5)
coverage_summary2 <- determineQuantiles(coverage_summary, quantiles, output)

determineCoverage Determines the coverage (recommended for whole-genome analyses)

Description

BadRegionFinder performs a coverage analysis of various samples at a time. The first, essen-
tial step of the analysis pipeline – the coverage determination – is performed by the function
determineCoverage. Thereby, the whole genome is scanned and wherever a covered base is reg-
istered or an originally targeted base is detected, detailed information concerning this position is
written out.

Usage

determineCoverage(samples, bam_input, targetRegions, output, TRonly)

Arguments

samples Data frame object containing the names of the samples to be analyzed (in one
column).

bam_input Folder containing the alignment data in bam- and bai format or BamFileList.

targetRegions Data frame- or GRanges object containing the target regions to be analyzed
(chromosome: first column, start position: second column and end position:
third column).

output The folder to write the output files into. If an empty string is provided, no files
are written out.

TRonly Boolean, indicating whether the coverage of the whole genome should be ana-
lyzed and reported (FALSE) or the coverage of the target regions only (TRUE).

determineCoverage 5

Details

The coverage which is determined by the function determineCoverage contains different steps:

For every sample that is defined in samples, the coverage is determined using the function coverage
("Determine Coverage"). To combine information on the coverage with information on whether
a set of bases were originally targeted by some sequencing experiment, the targetRegions get
processed ("Determine target bases"). Finally, the information gets combined ("Combine informa-
tion"): Those positions where no sample shows any coverage and no target base is registered, are
summed up. All other positions are reported basewise.

Files get written out in the form: "Summary_chr<chromosomename>.txt".

As sequencing does often not mean whole-genome- or whole-exome sequencing, but targeted se-
quencing, the function determienCoverage contains a switch: TRonly. In case misaligned reads
in a targeted sequencing experiment shall be analyzed, it is advisable to set TRonly to FALSE. Yet,
if only the coverage of the targeted regions are of interest, it is advisable to set TRonly to TRUE.

Value

A GRangesList is returned. Every GRanges object contains the coverage information of one chro-
mosome. The metadata columns contain information on the concrete coverage of each sample at a
specific position. Furthermore, the column ’TargetBases’ contains information on whether the con-
sidered region or position contains target bases (value 1) or not (value 0). A region cannot contain
both as two regions would be defined in this case.

If a chromosome is not covered and was not targeted as well, the GRanges object solely contains
a single line, considering a whole chromosome if TRonly=FALSE. If TRonly=TRUE the starting and
end position of the corresponding chromosome is set to zero.

Author(s)

Sarah Sandmann <sarah.sandmann@uni-muenster.de>

See Also

BadRegionFinder, determineCoverageQuality, determineRegionsOfInterest, reportBadRegionsSummary,
reportBadRegionsDetailed, reportBadRegionsGenes, plotSummary, plotDetailed, plotSummaryGenes,
determineQuantiles

Examples

sample_file <- system.file("extdata", "SampleNames.txt",
package = "BadRegionFinder")

samples <- read.table(sample_file)
bam_input <- system.file("extdata", package = "BadRegionFinder")
output <- system.file("extdata", package = "BadRegionFinder")
target_regions <- system.file("extdata", "targetRegions.bed",

package = "BadRegionFinder")
targetRegions <- read.table(target_regions, header = FALSE,

stringsAsFactors = FALSE)

6 determineCoverageQuality

coverage_summary <- determineCoverage(samples, bam_input, targetRegions, output,
TRonly = FALSE)

determineCoverageQuality

Classifies the determined coverage

Description

The previously determined coverage (using determineCoverage with TRonly = TRUE or TRonly =
FALSE) for all samples gets combined to be classified into six categories: bad coverage off target,
bad coverage on target, acceptable coverage off target, acceptable coverage on target, good coverage
off target, good coverage on target. These categories are user-defined.

Usage

determineCoverageQuality(threshold1, threshold2, percentage1, percentage2,
coverage_summary)

Arguments

threshold1 Integer, threshold defining the number of reads that have to be registered for a
sample that its coverage is classified as acceptable.

threshold2 Integer, threshold defining the number of reads that have to be registered for a
sample that its coverage is classified as good. To obtain useful results, threshold2
has to be greater than threshold1.

percentage1 Float, defining the percentage of samples that have to feature a coverage of at
least threshold1 so that the position is classified as acceptably covered.

percentage2 Float, defining the percentage of samples that have to feature a coverage of at
least threshold2 so that the position is classified as well covered. To obtain
useful results, percentage2 should be greater than zero.

coverage_summary

GRangesList object, return value of function determineCoverage.

Details

Every chromosome is analyzed individually. First, the coverage of each sample is categorized
according to threshold1 and threshold2 into three different categories:

bad coverage: less than threshold1 reads

acceptable coverage: at least threshold1, but less than threshold2 reads

good coverage: at least threshold2 reads

Subsequently this information gets combined with the defined precentages to obtain a numerically
coded quality value for each region saved in the previously created list object coverage_summary:

determineCoverageQuality 7

0: off target; not even percentage1 percent of all samples have a good or acceptable coverage (bad
region)

1: on target; not even percentage1 percent of all samples have a good or acceptable coverage (bad
region)

2: off target; at least percentage1 percent of all samples have a good or acceptable coverage, but
less than percentage2 percent of all samples have a good coverage (acceptable region)

3: on target; at least percentage1 percent of all samples have a good or acceptable coverage, but
less than percentage2 percent of all samples have a good coverage (acceptable region)

4: off target; at least percentage2 percent of all samples have a good coverage (good region)

5: on target; at least percentage2 percent of all samples have a good coverage (good region)

Value

A list is returned. Every component contains the coverage information of one chromosome as a
GRanges object. The metadata columns contain information on the concrete coverage of each sam-
ple at a specific position. Furthermore, the column ’TargetBases’ contains information on whether
the considered region or position contains target bases (value 1) or not (value 0). The column
’indicator’ contains information on the coverage quality of the corresponding region/position.

If a chromosome is not covered and was not targeted as well, the GRanges object solely contains a
single line, considering a whole chromosome if TRonly=FALSE. If TRonly=TRUE the corresponding
component is "NA".

Author(s)

Sarah Sandmann <sarah.sandmann@uni-muenster.de>

See Also

BadRegionFinder, determineCoverage, determineRegionsOfInterest, reportBadRegionsSummary,
reportBadRegionsDetailed, reportBadRegionsGenes, plotSummary, plotDetailed, plotSummaryGenes,
determineQuantiles

Examples

threshold1 <- 20
threshold2 <- 100
percentage1 <- 0.80
percentage2 <- 0.90
sample_file <- system.file("extdata", "SampleNames.txt",

package = "BadRegionFinder")
samples <- read.table(sample_file)
bam_input <- system.file("extdata", package = "BadRegionFinder")
output <- system.file("extdata", package = "BadRegionFinder")
target_regions <- system.file("extdata", "targetRegions.bed",

package = "BadRegionFinder")
targetRegions <- read.table(target_regions, header = FALSE,

stringsAsFactors = FALSE)

8 determineQuantiles

coverage_summary <- determineCoverage(samples, bam_input, targetRegions, output,
TRonly = FALSE)

coverage_indicators <- determineCoverageQuality(threshold1, threshold2,
percentage1, percentage2,
coverage_summary)

determineQuantiles Determines basewise user-defined quantiles

Description

The function determineQuantiles provides a possibility to determine user-definable quantiles for
every base previously analyzed. Thereby, the quantiles are determined over all samples.

Usage

determineQuantiles(coverage_summary, quantiles, output)

Arguments
coverage_summary

List object, return value of function determineCoverage.

quantiles Vector determining the quantiles to be calculated.

output The folder to write the output files into.

Details

The function determineQuantiles serves to determine a set of user-defined quantiles at each po-
sition over all samples. Every single base is analyzed, except for the case when the bases were not
originally targeted and if no coverage is detected by any of the samples. In this case the correspond-
ing region is summed up.

Files get written out in the form: "Quantiles_chr<chromosomename>.txt".

Value

A list is returned. Every component contains the coverage information of one chromosome as a
GRanges object. The metadata columns contain information on the coverage according to the pre-
viously defined quantiles. Furthermore, the column ’TargetBases’ contains information on whether
the considered region or position contains target bases (value 1) or not (value 0).

If a chromosome has not been targeted and/or not covered by any sample, but defined in regionsOfInterest,
the component is "NA".

Author(s)

Sarah Sandmann <sarah.sandmann@uni-muenster.de>

determineRegionsOfInterest 9

See Also

BadRegionFinder, determineCoverage, determineCoverageQuality, determineRegionsOfInterest,
reportBadRegionsSummary, reportBadRegionsDetailed, reportBadRegionsGenes, plotSummary,
plotDetailed, plotSummaryGenes

Examples

library("BSgenome.Hsapiens.UCSC.hg19")

sample_file <- system.file("extdata", "SampleNames.txt",
package = "BadRegionFinder")

samples <- read.table(sample_file)
bam_input <- system.file("extdata", package = "BadRegionFinder")
output <- system.file("extdata", package = "BadRegionFinder")
target_regions <- system.file("extdata", "targetRegions.bed",

package = "BadRegionFinder")
targetRegions <- read.table(target_regions, header = FALSE,

stringsAsFactors = FALSE)

coverage_summary <- determineCoverage(samples, bam_input, targetRegions, output,
TRonly = TRUE)

quantiles <- c(0.25, 0.5, 0.75)
coverage_summary2 <- determineQuantiles(coverage_summary, quantiles, output)

determineRegionsOfInterest

Determines the regions of interest

Description

The function determineRegionsOfInterest serves to select the coverage information (including
the coverage of all samples and - depending on the input object - their assigned quality value) of
one or more subsets of regions.

Usage

determineRegionsOfInterest(regionsOfInterest, coverage_indicators)

Arguments

regionsOfInterest

Data frame- or GRanges object containing the regions of interest (if data frame:
chromosome: first column, start position: second column and end position: third
column).

coverage_indicators

List object, return value of function determineCoverageQuality.

10 determineRegionsOfInterest

Details

Every chromosome is analyzed individually. For every base defined in regionsOfInterest the
previously determined coverage information is written out. The function thereby serves to select
special subsets of regions, e.g. targeted and untargeted regions when using determineCoverage
with TRonly=FALSE in the first place or particular targeted regions when using TRonly=TRUE.

It is not recommended to use TRonly=TRUE, but to select regions off target using determineRegionsOfInterest.
In this case, no coverage will be registered for all bases off target, as this information was not saved
during the step of determineCoverage.

If regionsOfInterest is identical compared to targetRegions and the function determineCoverage
with TRonly=TRUE has been used in the first place, the selection of regions that is returned is not
changed at all.

Value

A list is returned. Every component contains the coverage information of one chromosomeas as a
GRanges object. The metadata columns contain information on the concrete coverage of each sam-
ple at a specific position. Furthermore, the column ’TargetBases’ contains information on whether
the considered region or position contains target bases (value 1) or not (value 0). The column ’in-
dicator’ contains information on the coverage quality of the corresponding region/position (0: bad
region off target; 1: bad region on target; 2: acceptable region off target; 3: acceptable region on
target; 4: good region off target; 5: good region on target).

If a chromosome has not been targeted and/or not covered by any sample, but defined in regionsOfInterest,
the component is "NA".

Author(s)

Sarah Sandmann <sarah.sandmann@uni-muenster.de>

See Also

BadRegionFinder, determineCoverage, determineCoverageQuality, reportBadRegionsSummary,
reportBadRegionsDetailed, reportBadRegionsGenes, plotSummary, plotDetailed, plotSummaryGenes,
determineQuantiles

Examples

threshold1 <- 20
threshold2 <- 100
percentage1 <- 0.80
percentage2 <- 0.90
sample_file <- system.file("extdata", "SampleNames.txt",

package = "BadRegionFinder")
samples <- read.table(sample_file)
bam_input <- system.file("extdata", package = "BadRegionFinder")
output <- system.file("extdata", package = "BadRegionFinder")
target_regions <- system.file("extdata", "targetRegions.bed",

package = "BadRegionFinder")
targetRegions <- read.table(target_regions, header = FALSE,

stringsAsFactors = FALSE)

plotDetailed 11

coverage_summary <- determineCoverage(samples, bam_input, targetRegions, output,
TRonly = FALSE)

coverage_indicators <- determineCoverageQuality(threshold1, threshold2,
percentage1, percentage2,
coverage_summary)

coverage_indicators_2 <- determineRegionsOfInterest(targetRegions,
coverage_indicators)

plotDetailed Plots a more detailed overview of the coverage quality

Description

The function plotDetailed provides a possibility to visualize the output of reportBadRegionsDetailed.
A line graph is returned, visualizing the median coverage at each base that was chosen to be in the
region of interest. For each base, the category of coverage quality is color coded. Furthermore,
information on the genes that are located at the positions analyzed is included.

Usage

plotDetailed(threshold1, threshold2, percentage1, percentage2,
coverage_indicators_temp, output)

Arguments

threshold1 Integer, threshold defining the number of reads that have to be registered for a
sample that its coverage is classified as acceptable.

threshold2 Integer, threshold defining the number of reads that have to be registered for a
sample that its coverage is classified as good.

percentage1 Float, defining the percentage of samples that have to feature a coverage of at
least threshold1 so that the position is classified as acceptably covered.

percentage2 Float, defining the percentage of samples that have to feature a coverage of at
least threshold2 so that the position is classified as well covered.

coverage_indicators_temp

List object, return value of function reportBadRegionsDetailed.

output The folder to write the output file into. If this argument is an empty string, the
plot is printed on the screen.

Details

The function plotDetailed serves to summarize the previously determined coverage quality in
a visual way, including additionally information on the mean coverage over all samples at every
position.

12 plotDetailed

On the y axis the median coverage over all samples is coded. Every position is considered individ-
ually.

On the x axis the detected genes are printed. Wherever a new region covering a new gene is regis-
tered, a dashed line is drawn.

Yet, additionally to the mere median coverage, the corresponding coverage quality at each position
is also included in the plot. The different categories of coverage quality are color coded in the
following way: red - bad region on target; yellow - acceptable region on target; green - good region
on target; black - bad region off target; dark gray - acceptable region off target; light gray - good
region off target.

Value

No value is returned.

Author(s)

Sarah Sandmann <sarah.sandmann@uni-muenster.de>

See Also

BadRegionFinder, determineCoverage, determineCoverageQuality, determineRegionsOfInterest,
reportBadRegionsSummary, reportBadRegionsDetailed, reportBadRegionsGenes, plotSummary,
plotSummaryGenes, determineQuantiles

Examples

library("BSgenome.Hsapiens.UCSC.hg19")
threshold1 <- 20
threshold2 <- 100
percentage1 <- 0.80
percentage2 <- 0.90
sample_file <- system.file("extdata", "SampleNames.txt",

package = "BadRegionFinder")
samples <- read.table(sample_file)
bam_input <- system.file("extdata", package = "BadRegionFinder")
output <- system.file("extdata", package = "BadRegionFinder")
target_regions <- system.file("extdata", "targetRegions.bed",

package = "BadRegionFinder")
targetRegions <- read.table(target_regions, header = FALSE,

stringsAsFactors = FALSE)

coverage_summary <- determineCoverage(samples, bam_input, targetRegions, output,
TRonly = FALSE)

coverage_indicators <- determineCoverageQuality(threshold1, threshold2,
percentage1, percentage2,
coverage_summary)

coverage_indicators_temp <- reportBadRegionsDetailed(threshold1, threshold2,
percentage1, percentage2,
coverage_indicators, "",
samples, output)

plotDetailed(threshold1, threshold2, percentage1, percentage2,

plotSummary 13

coverage_indicators_temp, output)

plotSummary Plots a summary of the coverage quality

Description

The function plotSummary provides a possibility to visualize the output of reportBadRegionsSummary.
A line graph is returned, visualizing the number of bases that fall into each category of coverage
quality. Furthermore, information on the genes located in these regions is included.

Usage

plotSummary(threshold1, threshold2, percentage1, percentage2,
badCoverageSummary, output)

Arguments

threshold1 Integer, threshold defining the number of reads that have to be registered for a
sample that its coverage is classified as acceptable.

threshold2 Integer, threshold defining the number of reads that have to be registered for a
sample that its coverage is classified as good.

percentage1 Float, defining the percentage of samples that have to feature a coverage of at
least threshold1 so that the position is classified as acceptably covered.

percentage2 Float, defining the percentage of samples that have to feature a coverage of at
least threshold2 so that the position is classified as well covered.

badCoverageSummary

GRanges object, return value of function reportBadRegionsSummary.

output The folder to write the output file into. If this argument is an empty string, the
plot is printed on the screen.

Details

The function plotSummary serves to summarize the previously determined coverage quality in a
visual way.

On the y axis the coverage quality is coded. The different categories are color coded as well as
height coded. As numbers from 0 to 5 were previously assigned to the different categories, thick
lines are now drawn at the height of the category. Furthermore, the categories are color coded in the
following way: red - bad region on target; yellow - acceptable region on target; green - good region
on target; black - bad region off target; dark gray - acceptable region off target; light gray - good
region off target.

On the x axis the detected genes are printed. Wherever a new region covering a new gene is regis-
tered, a dashed line is drawn.

14 plotSummaryGenes

Value

No value is returned.

Author(s)

Sarah Sandmann <sarah.sandmann@uni-muenster.de>

See Also

BadRegionFinder, determineCoverage, determineCoverageQuality, determineRegionsOfInterest,
reportBadRegionsSummary, reportBadRegionsDetailed, reportBadRegionsGenes, plotDetailed,
plotSummaryGenes, determineQuantiles

Examples

library("BSgenome.Hsapiens.UCSC.hg19")

threshold1 <- 20
threshold2 <- 100
percentage1 <- 0.80
percentage2 <- 0.90
sample_file <- system.file("extdata", "SampleNames.txt",

package = "BadRegionFinder")
samples <- read.table(sample_file)
bam_input <- system.file("extdata", package = "BadRegionFinder")
output <- system.file("extdata", package = "BadRegionFinder")
target_regions <- system.file("extdata", "targetRegions.bed",

package = "BadRegionFinder")
targetRegions <- read.table(target_regions, header = FALSE,

stringsAsFactors = FALSE)

coverage_summary <- determineCoverage(samples, bam_input, targetRegions, output,
TRonly = TRUE)

coverage_indicators <- determineCoverageQuality(threshold1, threshold2,
percentage1, percentage2,
coverage_summary)

badCoverageSummary <- reportBadRegionsSummary(threshold1, threshold2,
percentage1, percentage2,
coverage_indicators, "", output)

plotSummary(threshold1, threshold2, percentage1, percentage2,
badCoverageSummary, output)

plotSummaryGenes Plots a summary of the coverage quality concerning the genes only

plotSummaryGenes 15

Description

The function plotSummaryGenes provides a possibility to visualize the output of reportBadRegionsGenes.
A barplot is returned, visualizing the percent of each gene that falls into each category of coverage
quality. The plot thereby serves to quickly distinguish well from bad covered genes.

Usage

plotSummaryGenes(threshold1, threshold2, percentage1, percentage2,
badCoverageGenes, output)

Arguments

threshold1 Integer, threshold defining the number of reads that have to be registered for a
sample that its coverage is classified as acceptable.

threshold2 Integer, threshold defining the number of reads that have to be registered for a
sample that its coverage is classified as good.

percentage1 Float, defining the percentage of samples that have to feature a coverage of at
least threshold1 so that the position is classified as acceptably covered.

percentage2 Float, defining the percentage of samples that have to feature a coverage of at
least threshold2 so that the position is classified as well covered.

badCoverageGenes

Data frame object, return value of function reportBadRegionsGenes.

output The folder to write the output file into. If this argument is an empty string, the
plot is printed on the screen.

Details

The function plotSummaryGenes serves to summarize the previously determined coverage quality
in a visual way concerning the genes only.

For every gene either one or two stacked bars are plotted. If a gene is covered, but it was not
originally targeted, a bar is plotted containing the following color code: black - bad region off
target; dark gray - acceptable region off target; light gray - good region off target. If a gene was
originally targeted, a bar is plotted containing the following color code: red - bad region on target;
yellow - acceptable region on target; green - good region on target.

Value

No value is returned.

Author(s)

Sarah Sandmann <sarah.sandmann@uni-muenster.de>

See Also

BadRegionFinder, determineCoverage, determineCoverageQuality, determineRegionsOfInterest,
reportBadRegionsSummary, reportBadRegionsDetailed, reportBadRegionsGenes, plotSummary,
plotDetailed, determineQuantiles

16 reportBadRegionsDetailed

Examples

library("BSgenome.Hsapiens.UCSC.hg19")
threshold1 <- 20
threshold2 <- 100
percentage1 <- 0.80
percentage2 <- 0.90
sample_file <- system.file("extdata", "SampleNames.txt",

package = "BadRegionFinder")
samples <- read.table(sample_file)
bam_input <- system.file("extdata", package = "BadRegionFinder")
output <- system.file("extdata", package = "BadRegionFinder")
target_regions <- system.file("extdata", "targetRegions.bed",

package = "BadRegionFinder")
targetRegions <- read.table(target_regions, header = FALSE,

stringsAsFactors = FALSE)

coverage_summary <- determineCoverage(samples, bam_input, targetRegions, output,
TRonly = TRUE)

coverage_indicators <- determineCoverageQuality(threshold1, threshold2,
percentage1, percentage2,
coverage_summary)

badCoverageSummary <- reportBadRegionsSummary(threshold1, threshold2,
percentage1, percentage2,
coverage_indicators, "", output)

badCoverageGenes <- reportBadRegionsGenes(threshold1, threshold2, percentage1,
percentage2, badCoverageSummary,
output)

plotSummaryGenes(threshold1, threshold2, percentage1, percentage2,
badCoverageGenes, output)

reportBadRegionsDetailed

Gives a detailed report on the coverage quality

Description

The function reportBadRegionsDetailed creates a detailed report containing all regions of inter-
est (basewise), the coverage of each sample at the corresponding positions, the indicator whether
the bases were originally targeted, their coverage quality and the corresponding gene (name and
geneID).

Usage

reportBadRegionsDetailed(threshold1, threshold2, percentage1, percentage2,
coverage_indicators, mart, samples, output)

reportBadRegionsDetailed 17

Arguments

threshold1 Integer, threshold defining the number of reads that have to be registered for a
sample that its coverage is classified as acceptable.

threshold2 Integer, threshold defining the number of reads that have to be registered for a
sample that its coverage is classified as good.

percentage1 Float, defining the percentage of samples that have to feature a coverage of at
least threshold1 so that the position is classified as acceptably covered.

percentage2 Float, defining the percentage of samples that have to feature a coverage of at
least threshold2 so that the position is classified as well covered.

coverage_indicators

List object, return value of function determineCoverageQuality or determineRegionsOfInterest.

mart mart as defined in the manual for package ’biomaRt’. If the human genome
(hg19) shall be used, an empty string may be provided and the mart is automat-
ically generated.

samples Data frame object containing the names of the samples to be analyzed (in one
column).

output The folder to write the output files into. If output is just an empty string, no
output file is written out.

Details

To gain more detailed information of the coverage quality, a file for every chromosome to be ana-
lyzed may be created by the function reportBadRegionsDetailed. The function may either take
information on the whole genome (output from determineCoverage with TRonly=FALSE, pro-
cessed using determineCoverageQuality) as an input, or information on the target regions (output
from determineCoverage with TRonly=TRUE, processed using determineCoverageQuality), or
information on a selection of regions of interest (output from determineRegionsOfInterest).

Different from the summed-up variant reportBadRegionsSummary, information on every single
base of interest gets reported (except for completely uncovered and untargeted regions, which are
summed up). For every base its position, the coverage of each sample, information on whether this
base was originally targeted (value 1) or not (value 0), the coverage quality and the most likely gene
(name and geneID) that was targeted by the original experiment get reported. Information on the
gene names and the geneIDs results from biomaRt. If no gene can be found at a position, "NA" is
reported for the corresponding base.

The output files are saved as: "BadCoverageChromosome<chromosomename>;threshold1;percentage1;threshold2;percentage2.txt".
The output file may be visualized using plotDetailed.

Value

A list is returned. Every component contains the coverage information of one chromosome as a
GRanges object. The metadata columns contain information on the concrete coverage of each sam-
ple at a specific position. Furthermore, the column ’TargetBases’ contains information on whether
the considered region or position contains target bases (value 1) or not (value 0). The column ’in-
dicator’ contains information on the coverage quality of the corresponding region/position (0: bad
region off target; 1: bad region on target; 2: acceptable region off target; 3: acceptable region on

18 reportBadRegionsDetailed

target; 4: good region off target; 5: good region on target). Furthermore, the name and the geneID
of the gene that is located at the corresponding position is saved.

If a chromosome is not covered and was not targeted as well, the component is "NA".

Author(s)

Sarah Sandmann <sarah.sandmann@uni-muenster.de>

References

More information on the R/Bioconductor package ’biomaRt’ may be found at:

http://www.bioconductor.org/packages/release/bioc/html/biomaRt.html

See Also

BadRegionFinder, determineCoverage, determineCoverageQuality, determineRegionsOfInterest,
reportBadRegionsSummary, reportBadRegionsGenes, plotSummary, plotDetailed, plotSummaryGenes,
determineQuantiles

Examples

library("BSgenome.Hsapiens.UCSC.hg19")

threshold1 <- 20
threshold2 <- 100
percentage1 <- 0.80
percentage2 <- 0.90
sample_file <- system.file("extdata", "SampleNames.txt",

package = "BadRegionFinder")
samples <- read.table(sample_file)
bam_input <- system.file("extdata", package = "BadRegionFinder")
output <- system.file("extdata", package = "BadRegionFinder")
target_regions <- system.file("extdata", "targetRegions.bed",

package = "BadRegionFinder")
targetRegions <- read.table(target_regions, header = FALSE,

stringsAsFactors = FALSE)

coverage_summary <- determineCoverage(samples, bam_input, targetRegions, output,
TRonly = TRUE)

coverage_indicators <- determineCoverageQuality(threshold1, threshold2,
percentage1, percentage2,
coverage_summary)

coverage_indicators_temp <- reportBadRegionsDetailed(threshold1, threshold2,
percentage1, percentage2,
coverage_indicators, "",
samples, output)

reportBadRegionsGenes 19

reportBadRegionsGenes Sums up the coverage quality on a gene basis

Description

The function reportBadRegionsGenes creates a summary report considering the coverage quality
on a genewise level. Taking the output of reportBadRegionsSummary as an input, the coverage
quality for every previously identified gene is reported.

Usage

reportBadRegionsGenes(threshold1, threshold2, percentage1, percentage2,
badCoverageSummary, output)

Arguments

threshold1 Integer, threshold defining the number of reads that have to be registered for a
sample that its coverage is classified as acceptable.

threshold2 Integer, threshold defining the number of reads that have to be registered for a
sample that its coverage is classified as good.

percentage1 Float, defining the percentage of samples that have to feature a coverage of at
least threshold1 so that the position is classified as acceptably covered.

percentage2 Float, defining the percentage of samples that have to feature a coverage of at
least threshold2 so that the position is classified as well covered.

badCoverageSummary

Data frame object, return value of function reportBadRegionsSummary.

output The folder to write the output file into. If output is just an empty string, no
output file is written out.

Details

To gain an overview of the coverage quality of each targeted/covered gene, a summary file may be
created by the function reportBadRegionsGenes. The function takes the output of reportBadRegionsSummary
as an input.

All regions covering the same gene are summed up in the following way:

The number of bases falling into each quality category is summed up. Thereby, regions which
were orignially targeted may easily be separated from those which were not, as targeted regions
always feature an uneven number characterizing their coverage quality. If a region is broader than
the detected gene, but the quality category is the same for the whole region, the whole region is
assigned to the gene.

If no gene is reported in the input file, the coverage quality is summed up for a gene named "NA".

The output file is saved as: "BadCoverageGenesthreshold1;percentage1;threshold2;percentage2.txt".
The output file may be visualized using plotSummaryGenes.

20 reportBadRegionsGenes

Value

A data frame object is returned. The first column contains the name and the geneID of the gene.
The following columns contain the percentage of bases falling into the following categories: bad
region off traget, bad region on target, acceptable region off target, acceptable region on target, good
region off target, good region on target.

Author(s)

Sarah Sandmann <sarah.sandmann@uni-muenster.de>

See Also

BadRegionFinder, determineCoverage, determineCoverageQuality, determineRegionsOfInterest,
reportBadRegionsSummary, reportBadRegionsDetailed, plotSummary, plotDetailed, plotSummaryGenes,
determineQuantiles

Examples

library("BSgenome.Hsapiens.UCSC.hg19")

threshold1 <- 20
threshold2 <- 100
percentage1 <- 0.80
percentage2 <- 0.90
sample_file <- system.file("extdata", "SampleNames.txt",

package = "BadRegionFinder")
samples <- read.table(sample_file)
bam_input <- system.file("extdata", package = "BadRegionFinder")
output <- system.file("extdata", package = "BadRegionFinder")
target_regions <- system.file("extdata", "targetRegions.bed",

package = "BadRegionFinder")
targetRegions <- read.table(target_regions, header = FALSE,

stringsAsFactors = FALSE)

coverage_summary <- determineCoverage(samples, bam_input, targetRegions, output,
TRonly = TRUE)

coverage_indicators <- determineCoverageQuality(threshold1, threshold2,
percentage1, percentage2,
coverage_summary)

badCoverageSummary <- reportBadRegionsSummary(threshold1, threshold2,
percentage1, percentage2,
coverage_indicators, "",output)

badCoverageGenes <- reportBadRegionsGenes(threshold1, threshold2, percentage1,
percentage2, badCoverageSummary, output)

reportBadRegionsSummary 21

reportBadRegionsSummary

Sums up the coverage quality

Description

The function reportBadRegionsSummary creates a summary report containing all regions of inter-
est, their coverage quality and the corresponding gene (name and geneID).

Usage

reportBadRegionsSummary(threshold1, threshold2, percentage1, percentage2,
coverage_indicators, mart, output)

Arguments

threshold1 Integer, threshold defining the number of reads that have to be registered for a
sample that its coverage is classified as acceptable.

threshold2 Integer, threshold defining the number of reads that have to be registered for a
sample that its coverage is classified as good.

percentage1 Float, defining the percentage of samples that have to feature a coverage of at
least threshold1 so that the position is classified as acceptably covered.

percentage2 Float, defining the percentage of samples that have to feature a coverage of at
least threshold2 so that the position is classified as well covered.

coverage_indicators

List object, return value of function determineCoverageQuality or determineRegionsOfInterest.

mart mart as defined in the manual for package ’biomaRt’. If the human genome
(hg19) shall be used, an empty string may be provided and the mart is automat-
ically generated.

output The folder to write the output file into. If output is just an empty string, no
output file is written out.

Details

To gain an overview of the coverage quality, a summary file may be created by the function
reportBadRegionsSummary. The function may either take information on the whole genome (out-
put from determineCoverage with TRonly=FALSE, processed using determineCoverageQuality)
as an input, or information on the target regions (output from determineCoverage with TRonly=TRUE,
processed using determineCoverageQuality), or information on a selection of regions of interest
(output from determineRegionsOfInterest).

Wherever subsequent bases feature the same coverage quality, the region gets summed up. Although
it is not directly reported whether a region contains on or off target bases, this information can be
gained from the coverage quality: all bases off target feature an even number characterizing the
coverage quality; all bases on target feature an uneven number characterizing the coverage quality.

22 reportBadRegionsSummary

For each summed up region the gene that is most likely to be targeted by the original experiment
gets reported using biomaRt. If no gene can be found, "NA" is saved for the corresponding region.
If not all bases in the summed up region cover a gene, the gene gets reported for the whole region
nonetheless.

The output file is saved as: "BadCoverageSummarythreshold1;percentage1;threshold2;percentage2.txt".
The output file may be visualized using plotSummary.

Value

A GRanges object is returned. It represents a summary of the those adjacent regions that feature
the same base quality. In the metadata columns the coverage quality of the region, the name and the
geneID of the gene that is located in the corresponding region is saved.

Author(s)

Sarah Sandmann <sarah.sandmann@uni-muenster.de>

References

More information on the R/Bioconductor package ’biomaRt’ may be found at:

http://www.bioconductor.org/packages/release/bioc/html/biomaRt.html

See Also

BadRegionFinder, determineCoverage, determineCoverageQuality, determineRegionsOfInterest,
reportBadRegionsDetailed, reportBadRegionsGenes, plotSummary, plotDetailed, plotSummaryGenes,
determineQuantiles

Examples

library("BSgenome.Hsapiens.UCSC.hg19")

threshold1 <- 20
threshold2 <- 100
percentage1 <- 0.80
percentage2 <- 0.90
sample_file <- system.file("extdata", "SampleNames.txt",

package = "BadRegionFinder")
samples <- read.table(sample_file)
bam_input <- system.file("extdata", package = "BadRegionFinder")
output <- system.file("extdata", package = "BadRegionFinder")
target_regions <- system.file("extdata", "targetRegions.bed",

package = "BadRegionFinder")
targetRegions <- read.table(target_regions, header = FALSE,

stringsAsFactors = FALSE)

coverage_summary <- determineCoverage(samples, bam_input, targetRegions, output,
TRonly = TRUE)

coverage_indicators <- determineCoverageQuality(threshold1, threshold2,
percentage1, percentage2,
coverage_summary)

reportBadRegionsSummary 23

badCoverageSummary <- reportBadRegionsSummary(threshold1, threshold2, percentage1,
percentage2, coverage_indicators,
"", output)

Index

∗ package
BadRegionFinder-package, 2

Bad Coverage (BadRegionFinder-package),
2

BadRegionFinder, 5, 7, 9, 10, 12, 14, 15, 18,
20, 22

BadRegionFinder
(BadRegionFinder-package), 2

BadRegionFinder-package, 2

Coverage Classifier
(BadRegionFinder-package), 2

determine Coverage Quality
(determineCoverageQuality), 6

determine Quantiles
(determineQuantiles), 8

determine Regions Of Interest
(determineRegionsOfInterest), 9

determineCoverage, 3, 4, 7, 9, 10, 12, 14, 15,
18, 20, 22

determineCoverageQuality, 3, 5, 6, 9, 10,
12, 14, 15, 18, 20, 22

determineQuantiles, 3, 5, 7, 8, 10, 12, 14,
15, 18, 20, 22

determineRegionsOfInterest, 3, 5, 7, 9, 9,
12, 14, 15, 18, 20, 22

plot Detailed (plotDetailed), 11
plot Summary (plotSummary), 13
plot Summary Genes (plotSummaryGenes),

14
plotDetailed, 3, 5, 7, 9, 10, 11, 14, 15, 18,

20, 22
plotSummary, 3, 5, 7, 9, 10, 12, 13, 15, 18, 20,

22
plotSummaryGenes, 3, 5, 7, 9, 10, 12, 14, 14,

18, 20, 22

report Bad Regions Detailed
(reportBadRegionsDetailed), 16

report Bad Regions Genes
(reportBadRegionsGenes), 19

report Bad Regions Summary
(reportBadRegionsSummary), 21

reportBadRegionsDetailed, 3, 5, 7, 9, 10,
12, 14, 15, 16, 20, 22

reportBadRegionsGenes, 3, 5, 7, 9, 10, 12,
14, 15, 18, 19, 22

reportBadRegionsSummary, 3, 5, 7, 9, 10, 12,
14, 15, 18, 20, 21

24

	BadRegionFinder-package
	determineCoverage
	determineCoverageQuality
	determineQuantiles
	determineRegionsOfInterest
	plotDetailed
	plotSummary
	plotSummaryGenes
	reportBadRegionsDetailed
	reportBadRegionsGenes
	reportBadRegionsSummary
	Index

