| predict_model {ttgsea} | R Documentation |
From the result of the function "ttgsea", we can predict enrichment scores. For each new term, lemmatized text, predicted enrichment score, Monte Carlo p-value and adjusted p-value are provided. The function "token_vector" is used for encoding as we did for training. Of course, mapping from tokens to integers should be the same.
predict_model(object, new_text, num_simulations = 1000,
adj_p_method = "fdr")
object |
result of "ttgsea" |
new_text |
new text data |
num_simulations |
number of simulations for Monte Carlo p-value (default: 1000) |
adj_p_method |
correction method (default: "fdr") |
table for lemmatized text, predicted enrichment score, MC p-value and adjusted p-value
Dongmin Jung
stats::p.adjust
library(reticulate)
if (keras::is_keras_available() & reticulate::py_available()) {
library(fgsea)
data(examplePathways)
data(exampleRanks)
names(examplePathways) <- gsub("_", " ",
substr(names(examplePathways), 9, 1000))
set.seed(1)
fgseaRes <- fgsea(examplePathways, exampleRanks)
num_tokens <- 1000
length_seq <- 30
batch_size <- 32
embedding_dims <- 50
num_units <- 32
epochs <- 1
ttgseaRes <- fit_model(fgseaRes, "pathway", "NES",
model = bi_gru(num_tokens,
embedding_dims,
length_seq,
num_units),
num_tokens = num_tokens,
length_seq = length_seq,
epochs = epochs,
batch_size = batch_size,
use_generator = FALSE)
set.seed(1)
predict_model(ttgseaRes, "Cell Cycle")
}