| run_DESeq2 {systemPipeR} | R Documentation |
Convenience wrapper function to identify differentially expressed genes
(DEGs) in batch mode with DESeq2 for any number of pairwise sample
comparisons specified under the cmp argument. Users are strongly
encouraged to consult the DESeq2 vignette for more detailed information
on this topic and how to properly run DESeq2 on data sets with more
complex experimental designs.
run_DESeq2(countDF, targets, cmp, independent = FALSE, lfcShrink=FALSE, type="normal")
countDF |
|
targets |
targets |
cmp |
|
independent |
If |
lfcShrink |
logiacal. If |
type |
please check |
data.frame containing DESeq2 results from all comparisons. Comparison labels are appended to column titles for tracking.
Thomas Girke
Please properly cite the DESeq2 papers when using this function:
http://www.bioconductor.org/packages/devel/bioc/html/DESeq2.html
run_edgeR, readComp and DESeq2 vignette
targetspath <- system.file("extdata", "targets.txt", package="systemPipeR")
targets <- read.delim(targetspath, comment.char = "#")
cmp <- readComp(file=targetspath, format="matrix", delim="-")
countfile <- system.file("extdata", "countDFeByg.xls", package="systemPipeR")
countDF <- read.delim(countfile, row.names=1)
degseqDF <- run_DESeq2(countDF=countDF, targets=targets, cmp=cmp[[1]], independent=FALSE)
pval <- degseqDF[, grep("_FDR$", colnames(degseqDF)), drop=FALSE]
fold <- degseqDF[, grep("_logFC$", colnames(degseqDF)), drop=FALSE]
DEG_list <- filterDEGs(degDF=degseqDF, filter=c(Fold=2, FDR=10))
names(DEG_list)
DEG_list$Summary