| seuratComputeHeatmap {singleCellTK} | R Documentation |
seuratComputeHeatmap Computes the heatmap plot object from the pca slot in the input sce object
seuratComputeHeatmap(
inSCE,
useAssay,
useReduction = c("pca", "ica"),
dims = NULL,
nfeatures = 30,
cells = NULL,
ncol = NULL,
balanced = TRUE,
fast = TRUE,
combine = TRUE,
raster = TRUE,
externalReduction = NULL
)
inSCE |
(sce) object from which to compute heatmap (pca should be computed) |
useAssay |
Assay containing scaled counts to use in heatmap. |
useReduction |
Reduction method to use for computing clusters. One of
"pca" or "ica". Default |
dims |
Number of components to generate heatmap plot objects. If
|
nfeatures |
Number of features to include in the heatmap. Default
|
cells |
Numeric value indicating the number of top cells to plot.
Default is |
ncol |
Numeric value indicating the number of columns to use for plot.
Default is |
balanced |
Plot equal number of genes with positive and negative scores.
Default is |
fast |
See DimHeatmap for more information. Default
|
combine |
See DimHeatmap for more information. Default
|
raster |
See DimHeatmap for more information. Default
|
externalReduction |
Pass DimReduc object if PCA/ICA computed through
other libraries. Default |
plot object
data(scExample, package = "singleCellTK") ## Not run: sce <- seuratNormalizeData(sce, useAssay = "counts") sce <- seuratFindHVG(sce, useAssay = "counts") sce <- seuratScaleData(sce, useAssay = "counts") sce <- seuratPCA(sce, useAssay = "counts") heatmap <- seuratComputeHeatmap(sce, useAssay = "counts") seuratHeatmapPlot(heatmap) ## End(Not run)