| StatModel-class {msqrob2} | R Documentation |
The StatModel class contains a statistical model as applied on a
feature.
Models are created by the dedicated user-level functions
(msqrob(), mqrobAggregate()) or manually, using the
StatModel() constructor. In the former case, each quantitative
feature is assigned its statistical model and the models are stored
as a variable in a DataFrame object, as illustred in the example
below.
Function for constructing a new StatModel object.
## S4 method for signature 'StatModel' show(object) StatModel( type = "fitError", params = list(), varPosterior = NA_real_, dfPosterior = NA_real_ )
object |
|
type |
default set to fit-error, can be a "lm", "rlm" (robust lm with M estimation), "lmer" (when mixed models or ridge regression is adopted), "quasibinomial" (when peptide counts are fitted) |
params |
A list containing the parameters of the fitted model |
varPosterior |
Numeric, posterior variance, default is NA |
dfPosterior |
Numeric, posterior degrees of freedom, default is NA |
A StatModel object
typecharacter(1) defining type of the used model. Default
is "fitError", i.e. a error model. Other include "lm",
"rlm", ...
paramsA list() containing information of the used model.
varPosteriornumeric() of posterior variance.
dfPosteriornumeric() of posterior degrees of freedom.
Oliver M. Crook, Laurent Gatto, Lieven Clement
## A fully specified dummy model
myModel <- StatModel(
type = "rlm",
params = list(x = 3, y = 7, b = 4),
varPosterior = c(0.1, 0.2, 0.3),
dfPosterior = c(6, 7, 8)
)
myModel
## A collection of models stored as a variable in a DataFrame
mod1 <- StatModel(type = "rlm")
mod2 <- StatModel(type = "lm")
df <- DataFrame(x = 1:2)
df$mods <- c(mod1, mod2)
df
# TODO