| calculateDMN {mia} | R Documentation |
These functions are accessors for functions implemented in the
DirichletMultinomial
package
calculateDMN(x, ...)
## S4 method for signature 'ANY'
calculateDMN(
x,
k = 1,
BPPARAM = SerialParam(),
seed = runif(1, 0, .Machine$integer.max),
...
)
## S4 method for signature 'SummarizedExperiment'
calculateDMN(
x,
abund_values = exprs_values,
exprs_values = "counts",
transposed = FALSE,
...
)
runDMN(x, name = "DMN", ...)
getDMN(x, name = "DMN", ...)
## S4 method for signature 'SummarizedExperiment'
getDMN(x, name = "DMN")
bestDMNFit(x, name = "DMN", type = c("laplace", "AIC", "BIC"), ...)
## S4 method for signature 'SummarizedExperiment'
bestDMNFit(x, name = "DMN", type = c("laplace", "AIC", "BIC"))
getBestDMNFit(x, name = "DMN", type = c("laplace", "AIC", "BIC"), ...)
## S4 method for signature 'SummarizedExperiment'
getBestDMNFit(x, name = "DMN", type = c("laplace", "AIC", "BIC"))
calculateDMNgroup(x, ...)
## S4 method for signature 'ANY'
calculateDMNgroup(
x,
variable,
k = 1,
seed = runif(1, 0, .Machine$integer.max),
...
)
## S4 method for signature 'SummarizedExperiment'
calculateDMNgroup(
x,
variable,
abund_values = exprs_values,
exprs_values = "counts",
transposed = FALSE,
...
)
performDMNgroupCV(x, ...)
## S4 method for signature 'ANY'
performDMNgroupCV(
x,
variable,
k = 1,
seed = runif(1, 0, .Machine$integer.max),
...
)
## S4 method for signature 'SummarizedExperiment'
performDMNgroupCV(
x,
variable,
abund_values = exprs_values,
exprs_values = "counts",
transposed = FALSE,
...
)
x |
a numeric matrix with samples as rows or a
|
... |
optional arguments not used. |
k |
the number of Dirichlet components to fit. See
|
BPPARAM |
A
|
seed |
random number seed. See
|
abund_values |
a single |
exprs_values |
a single |
transposed |
Logical scalar, is x transposed with samples in rows? |
name |
the name to store the result in
|
type |
the type of measure used for the goodness of fit. One of ‘laplace’, ‘AIC’ or ‘BIC’. |
variable |
a variable from |
calculateDMN and getDMN return a list of DMN objects,
one element for each value of k provided.
bestDMNFit returns the index for the best fit and getBestDMNFit
returns a single DMN object.
calculateDMNgroup returns a
DMNGroup object
performDMNgroupCV returns a data.frame
DMN-class,
DMNGroup-class,
dmn,
dmngroup,
cvdmngroup ,
accessors for DMN objects
fl <- system.file(package="DirichletMultinomial", "extdata", "Twins.csv")
counts <- as.matrix(read.csv(fl, row.names=1))
fl <- system.file(package="DirichletMultinomial", "extdata", "TwinStudy.t")
pheno0 <- scan(fl)
lvls <- c("Lean", "Obese", "Overwt")
pheno <- factor(lvls[pheno0 + 1], levels=lvls)
colData <- DataFrame(pheno = pheno)
se <- SummarizedExperiment(assays = list(counts = counts),
colData = colData)
#
dmn <- calculateDMN(se)
dmn[[1L]]
# since this take a bit of resources to calculate for k > 1, the data is
# loaded
## Not run:
se <- runDMN(se, name = "DMN", k = 1:7)
## End(Not run)
data(dmn_se)
names(metadata(dmn_se))
# return a list of DMN objects
getDMN(dmn_se)
# return, which objects fits best
bestDMNFit(dmn_se, type = "laplace")
# return the model, which fits best
getBestDMNFit(dmn_se, type = "laplace")