| top.genes {geva} | R Documentation |
Extracts the genes with a relevant classification according to the GEVA results.
top.genes(
gevaresults,
classif = c("similar", "factor-dependent", "factor-specific"),
which.spec = levels(gevaresults),
add.cols = NULL,
...,
names.only = FALSE
)
gevaresults |
a |
classif |
|
which.spec |
|
add.cols |
|
... |
optional arguments (not used in this version) |
names.only |
|
If names.only is FALSE (the default), returns a subset of the resultstable slot (data.frame) from the gevaresults that includes only the filtered genes according to the function parameters.
Otherwise, if names.only is TRUE, returns only the row names (character vector) of this table subset.
## Basic usage with a random generated input ginput <- geva.ideal.example() # Generates a random input example gresults <- geva.quick(ginput) # Performs the entire analysis (default parameters) # Gets a table that includes all the top genes dtgenes <- top.genes(gresults) # Gets the top genes table head(dtgenes) # Prints the first results # Appends the "Symbol" column to the results table dtgenes <- top.genes(gresults, add.cols="Symbol") head(dtgenes) # Prints the first results # Appends all feature columns to the results table dtgenes <- top.genes(gresults, add.cols=names(featureTable(gresults))) head(dtgenes) # Prints the first results # Gets only the factor-specific genes dtgenes <- top.genes(gresults, "factor-specific") head(dtgenes) # Prints the first results # Gets only the factor-specific genes for "Cond_1" factor (if any) dtgenes <- top.genes(gresults, "factor-specific", "Cond_1") head(dtgenes) # Prints the first results