| densne {densvis} | R Documentation |
Density-preserving t-SNE
densne(
X,
dims = 2,
perplexity = 50,
theta = 0.5,
verbose = getOption("verbose", FALSE),
max_iter = 1000,
Y_init = NULL,
stop_lying_iter = if (is.null(Y_init)) 250L else 0L,
mom_switch_iter = if (is.null(Y_init)) 250L else 0L,
momentum = 0.5,
final_momentum = 0.8,
eta = 200,
exaggeration_factor = 12,
dens_frac = 0.3,
dens_lambda = 0.1,
num_threads = 1,
normalize = TRUE
)
X |
Input data matrix. |
dims |
Integer output dimensionality. |
perplexity |
Perplexity parameter (should not be bigger than 3 * perplexity < nrow(X) - 1). |
theta |
Speed/accuracy trade-off (increase for less accuracy), set to 0.0 for exact TSNE |
verbose |
Logical; Whether progress updates should be printed |
max_iter |
integer; Number of iterations |
Y_init |
matrix; Initial locations of the objects. If NULL, random initialization will be used |
stop_lying_iter |
integer; Iteration after which the perplexities are no longer exaggerated |
mom_switch_iter |
integer; Iteration after which the final momentum is used |
momentum |
numeric; Momentum used in the first part of the optimization |
final_momentum |
numeric; Momentum used in the final part of the optimization |
eta |
numeric; Learning rate |
exaggeration_factor |
numeric; Exaggeration factor used to multiply the affinities matrix P in the first part of the optimization |
dens_frac |
numeric; fraction of the iterations for which the full
objective function (including the density-preserving term) is used.
For the first |
dens_lambda |
numeric; the relative importanceof the density-preservation term compared to the original t-SNE objective function. |
num_threads |
Number of threads to be used for parallelisation. |
normalize |
logical; Should data be normalized internally prior to
distance calculations with |
A numeric matrix corresponding to the t-SNE embedding
Density-Preserving Data Visualization Unveils Dynamic Patterns of Single-Cell Transcriptomic Variability Ashwin Narayan, Bonnie Berger, Hyunghoon Cho; bioRxiv (2020) doi:10.1101/2020.05.12.077776
x <- matrix(rnorm(1e3), nrow = 100) d <- densne(x, perplexity = 5) plot(d)