| plot_cor {clustifyr} | R Documentation |
Plot similarity measures on a tSNE or umap
plot_cor( cor_mat, metadata, data_to_plot = colnames(cor_mat), cluster_col = NULL, x = "UMAP_1", y = "UMAP_2", scale_legends = FALSE, ... )
cor_mat |
input similarity matrix |
metadata |
input metadata with per cell tsne or umap coordinates and cluster ids |
data_to_plot |
colname of data to plot, defaults to all |
cluster_col |
colname of clustering data in metadata, defaults to rownames of the metadata if not supplied. |
x |
metadata column name with 1st axis dimension. defaults to "UMAP_1". |
y |
metadata column name with 2nd axis dimension. defaults to "UMAP_2". |
scale_legends |
if TRUE scale all legends to maximum values in entire correlation matrix. if FALSE scale legends to maximum for each plot. A two-element numeric vector can also be passed to supply custom values i.e. c(0, 1) |
... |
passed to plot_dims |
list of ggplot objects, cells projected by dr, colored by cor values
res <- clustify(
input = pbmc_matrix_small,
metadata = pbmc_meta,
ref_mat = cbmc_ref,
query_genes = pbmc_vargenes,
cluster_col = "classified"
)
plot_cor(
cor_mat = res,
metadata = pbmc_meta,
data_to_plot = colnames(res)[1:2],
cluster_col = "classified",
x = "UMAP_1",
y = "UMAP_2"
)