| set_MAST {benchdamic} | R Documentation |
Set the parameters for MAST differential abundance detection method.
set_MAST(
pseudo_count = FALSE,
rescale = c("median", "default"),
design = NULL,
coefficient = NULL,
norm = "TSS",
expand = TRUE
)
pseudo_count |
add 1 to all counts if TRUE (default
|
rescale |
Rescale count data, per million if 'default', or per median library size if 'median' ('median' is suggested for metagenomics data). |
design |
The model for the count distribution. Can be the variable name, or a character similar to "~ 1 + group", or a formula, or a 'model.matrix' object. |
coefficient |
The coefficient of interest as a single word formed by the variable name and the non reference level. (e.g.: 'ConditionDisease' if the reference level for the variable 'Condition' is 'control'). |
norm |
name of the normalization method used to compute the
normalization factors to use in the differential abundance analysis. If
|
expand |
logical, if TRUE create all combinations of input parameters
(default |
A named list containing the set of parameters for DA_MAST
method.
# Set some basic combinations of parameters for MAST
base_MAST <- set_MAST(design = ~ group, coefficient = "groupB")
# Set a specific set of normalization for MAST (even of other packages!)
setNorm_MAST <- set_MAST(design = ~ group, coefficient = "groupB",
norm = c("TSS", "poscounts", "TMM"))
# Set many possible combinations of parameters for MAST
all_MAST <- set_MAST(pseudo_count = c(TRUE, FALSE), rescale = c("median",
"default"), design = ~ group, coefficient = "groupB", norm = c("TSS",
"poscounts"))