| plot_igraph {TraRe} | R Documentation |
Collection of functions for generating graphs layouts to plot GRN obtained from NET_run() method.
return_layout() generates a layout from the graph object returned by NET_run() and return_layout_phenotype()
plots targets according to the t-statistic from the differential expression analysis of the desired phenotype.
plot_igraph() takes in the igraph object and generated layout and generates plot.
plot_igraph(mygraph = NULL, mytitle = "", titlecol = "black", mylayout = NULL) return_layout(regs = NULL, targets = NULL, namehash = NULL) return_layout_phenotype( regs = NULL, targets = NULL, varfile = NULL, namehash = NULL ) orderGraphWeights(graph, edgelist)
mygraph |
igraph object returned from |
mytitle |
Desired tittle. |
titlecol |
Color for the tittle. |
mylayout |
desired layout. |
regs |
regulators name list |
targets |
targets name list |
namehash |
list containing the drivers genes as names and transcripts as values. If only genes are required, leave it empty. |
varfile |
two column file containing, gene names as rows, t-statistic from the differential expression analysis of the desired phenotype column and a boolean variable for regulator (1) - no regulator (0) column. |
graph |
igraph object |
edgelist |
list containing the edges of the igraph object. |
plot of the desired single GRN using a specific layout.
## Assume we have run the rewiring method and the `NET_run()` method to generate the
## igraph object. We are going to generate and plot both layouts for the example.
## We are going to generate all the files we need except for the igraph object, which
## is included as an example file in this package.
## We load the igraph object that we generated from the `NET_run()` example.
## Note: the igraph object is inside the list `NET_run()` generates.
graph <- readRDS(paste0(system.file('extdata',package='TraRe'),
'/graph_netrun_example.rds'))$graphs$VBSR
## We first generate the normal layout for the plot.
## We need the drivers and target names.
drivers <- readRDS(paste0(system.file('extdata',package='TraRe'),'/tfs_linker_example.rds'))
drivers_n <- rownames(drivers)
targets <- readRDS(paste0(system.file('extdata',package='TraRe'),'/targets_linker_example.rds'))
targets_n <- rownames(targets)
## As for this example we are working at gene level (we dont have transcripts inside genes),
## we will generate a dictionary with genes as keys and values (see param `namehash`)
normal_layout <- return_layout(drivers_n,targets_n)
## We now generate the phenotype layout and the `varfile` we ned for this layout.
## (I leave here a way to generate) We need to separate our expression matrix by
## a binary phenotype, for this case, i will consider the first 40 samples are
## responding to a treatment (R) and the rest not (NR).
gnames <- c(drivers_n,targets_n)
expmat <-rbind(drivers,targets)
phenotype <- utils::read.delim(paste0(system.file('extdata',package='TraRe'),
'/phenotype_rewiring_example.txt'))
expmat_R <- expmat[,phenotype$Class=='R']
expmat_NR <- expmat[,phenotype$Class=='NR']
varfile <- t(as.matrix(sapply(gnames,
function(x) c(stats::t.test(expmat_R[x,],expmat_NR[x,])$statistic,
if(x%in%drivers_n) 1 else 0))))
colnames(varfile)<-c('t-stat','is-regulator')
phenotype_layout <- return_layout_phenotype(drivers_n,targets_n,varfile)
plot_igraph(graph,mytitle='Normal Layout',titlecol='black',mylayout=normal_layout)
plot_igraph(graph,mytitle='Phenotype Layout',titlecol='black',mylayout=phenotype_layout)