| results_expr {RegEnrich} | R Documentation |
results_expr accesses raw expression data.
results_DEA accesses results from differential expression analysis.
results_topNet accesses results from network inference.
retults_enrich accesses results from FET/GSEA enrichment analysis.
results_score accesses results from regulator scoring and ranking.
results_expr(object) results_DEA(object) results_topNet(object) results_enrich(object) results_score(object)
object |
RegenrichSet object. |
results_expr retures an expression matrix.
results_DEA returns a list result of differentila analysis.
results_topNet returns a TopNetwork object.
results_enrich returns an Enrich object by either FET or GSEA method.
results_score returns an data frame of summarized ranking scores of regulators.
# library(RegEnrich)
data("Lyme_GSE63085")
data("TFs")
data = log2(Lyme_GSE63085$FPKM + 1)
colData = Lyme_GSE63085$sampleInfo
# Take first 2000 rows for example
data1 = data[seq(2000), ]
design = model.matrix(~0 + patientID + week, data = colData)
# Initializing a 'RegenrichSet' object
object = RegenrichSet(expr = data1,
colData = colData,
method = 'limma', minMeanExpr = 0,
design = design,
contrast = c(rep(0, ncol(design) - 1), 1),
networkConstruction = 'COEN',
enrichTest = 'FET')
# Differential expression analysis
object = regenrich_diffExpr(object)
results_expr(object)
results_DEA(object)
# Network inference using 'COEN' method
object = regenrich_network(object)
results_topNet(object)
# Enrichment analysis by Fisher's exact test (FET)
object = regenrich_enrich(object)
results_enrich(object)
# Regulators ranking
object = regenrich_rankScore(object)
results_score(object)