| top_integrations {ISAnalytics} | R Documentation |
The input data frame will be sorted by the highest values in
the columns specified and the top n rows will be returned as output.
The user can choose to keep additional columns in the output
by passing a vector of column names or passing 2 "shortcuts":
keep = "everything" keeps all columns in the original data frame
keep = "nothing" only keeps the mandatory columns
(mandatory_IS_vars()) plus the columns in the columns parameter.
top_integrations( x, n = 20, columns = "fragmentEstimate_sum_RelAbundance", keep = "everything", key = NULL )
x |
An integration matrix (data frame containing
|
n |
How many integrations should be sliced (in total or for each group)? Must be numeric or integer and greater than 0 |
columns |
Columns to use for the sorting. If more than a column is supplied primary ordering is done on the first column, secondary ordering on all other columns |
keep |
Names of the columns to keep besides |
key |
Either |
Either a data frame with at most n rows or a data frames with at most n*(number of groups) rows.
Other Analysis functions:
CIS_grubbs(),
comparison_matrix(),
compute_abundance(),
cumulative_count_union(),
cumulative_is(),
is_sharing(),
iss_source(),
purity_filter(),
sample_statistics(),
separate_quant_matrices(),
threshold_filter()
smpl <- tibble::tibble(
chr = c("1", "2", "3", "4", "5", "6"),
integration_locus = c(14536, 14544, 14512, 14236, 14522, 14566),
strand = c("+", "+", "-", "+", "-", "+"),
CompleteAmplificationID = c("ID1", "ID2", "ID1", "ID1", "ID3", "ID2"),
Value = c(3, 10, 40, 2, 15, 150),
Value2 = c(456, 87, 87, 9, 64, 96),
Value3 = c("a", "b", "c", "d", "e", "f")
)
top <- top_integrations(smpl,
n = 3,
columns = c("Value", "Value2"),
keep = "nothing"
)
top_key <- top_integrations(smpl,
n = 3,
columns = "Value",
keep = "Value2",
key = "CompleteAmplificationID"
)