| comparison_matrix {ISAnalytics} | R Documentation |
Takes a list of integration matrices referring to different quantification
types and merges them in a single data frame that has multiple
value columns, each renamed according to their quantification type
of reference.
comparison_matrix( x, fragmentEstimate = "fragmentEstimate", seqCount = "seqCount", barcodeCount = "barcodeCount", cellCount = "cellCount", ShsCount = "ShsCount" )
x |
A named list of integration matrices, ideally obtained via import_parallel_Vispa2Matrices_interactive or import_parallel_Vispa2Matrices_auto. Names must be quantification types. |
fragmentEstimate |
The name of the output column for fragment estimate values |
seqCount |
The name of the output column for sequence count values |
barcodeCount |
The name of the output column for barcode count values |
cellCount |
The name of the output column for cell count values |
ShsCount |
The name of the output column for Shs count values |
A tibble
Other Analysis functions:
CIS_grubbs(),
compute_abundance(),
cumulative_count_union(),
cumulative_is(),
is_sharing(),
iss_source(),
purity_filter(),
sample_statistics(),
separate_quant_matrices(),
threshold_filter(),
top_integrations()
fs_path <- system.file("extdata", "fs.zip", package = "ISAnalytics")
fs <- unzip_file_system(fs_path, "fs")
af_path <- system.file("extdata", "asso.file.tsv.gz",
package = "ISAnalytics"
)
af <- import_association_file(af_path,
root = fs,
import_iss = FALSE,
report_path = NULL
)
matrices <- import_parallel_Vispa2Matrices(af,
c("seqCount", "fragmentEstimate"),
mode = "AUTO", report_path = NULL, multi_quant_matrix = FALSE
)
multi_quant <- comparison_matrix(matrices)
head(multi_quant)