BiocNeighbors 1.12.0
The BiocNeighbors package provides several algorithms for approximate neighbor searches:
These methods complement the exact algorithms described previously.
Again, it is straightforward to switch from one algorithm to another by simply changing the BNPARAM argument in findKNN and queryKNN.
We perform the k-nearest neighbors search with the Annoy algorithm by specifying BNPARAM=AnnoyParam().
nobs <- 10000
ndim <- 20
data <- matrix(runif(nobs*ndim), ncol=ndim)
fout <- findKNN(data, k=10, BNPARAM=AnnoyParam())
head(fout$index)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 9132 486 3702 9226 3669 6981 3108 9122 6643 9331
## [2,] 4647 3732 2324 6478 3408 5033 4518 4443 3730 2800
## [3,] 5338 6931 1751 7620 7500 8486 9228 7420 9835 9790
## [4,] 3731 3099 9586 6848 1331 6740 9061 4712 7945 1727
## [5,] 5027 353 701 5631 7507 9070 9111 8457 3522 2309
## [6,] 8563 4388 9485 5990 9660 1023 6027 2571 5531 6911
head(fout$distance)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 0.7955538 0.7993070 0.8670275 0.8893975 0.8990859 0.9185116 0.9308243
## [2,] 0.8612506 0.8810785 0.8846026 0.9016428 0.9525601 0.9794540 0.9894384
## [3,] 0.8985270 0.9190195 0.9773331 0.9811532 0.9923183 0.9931732 1.0417367
## [4,] 0.8401244 0.8699952 0.8739700 0.8985938 0.8994962 0.9097665 0.9111904
## [5,] 1.0512825 1.0699428 1.0717589 1.0932229 1.1015829 1.1048776 1.1068014
## [6,] 0.7201223 0.8758298 0.9073330 0.9589700 0.9773981 0.9850024 0.9959804
## [,8] [,9] [,10]
## [1,] 0.9489902 0.9665209 0.9728610
## [2,] 0.9967210 1.0027425 1.0114421
## [3,] 1.0571125 1.0683599 1.0922165
## [4,] 0.9245242 0.9503780 0.9547779
## [5,] 1.1175274 1.1209606 1.1239760
## [6,] 1.0304445 1.0322986 1.0459485
We can also identify the k-nearest neighbors in one dataset based on query points in another dataset.
nquery <- 1000
ndim <- 20
query <- matrix(runif(nquery*ndim), ncol=ndim)
qout <- queryKNN(data, query, k=5, BNPARAM=AnnoyParam())
head(qout$index)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1346 4530 4406 8088 5497
## [2,] 8659 3643 8990 3902 1001
## [3,] 7100 2624 2153 4897 6453
## [4,] 7749 6135 2230 265 8620
## [5,] 2995 5749 6548 921 1780
## [6,] 7579 8470 2683 8108 7873
head(qout$distance)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.9977517 1.0536718 1.068333 1.073585 1.077637
## [2,] 1.0567617 1.0594093 1.060906 1.062710 1.075028
## [3,] 0.9056990 0.9921265 1.035131 1.040361 1.051483
## [4,] 1.0141206 1.0184829 1.037667 1.063885 1.068576
## [5,] 1.0487195 1.0592717 1.082760 1.119992 1.138012
## [6,] 0.9695914 0.9891419 1.058603 1.082217 1.083325
It is similarly easy to use the HNSW algorithm by setting BNPARAM=HnswParam().
Most of the options described for the exact methods are also applicable here. For example:
subset to identify neighbors for a subset of points.get.distance to avoid retrieving distances when unnecessary.BPPARAM to parallelize the calculations across multiple workers.BNINDEX to build the forest once for a given data set and re-use it across calls.The use of a pre-built BNINDEX is illustrated below:
pre <- buildIndex(data, BNPARAM=AnnoyParam())
out1 <- findKNN(BNINDEX=pre, k=5)
out2 <- queryKNN(BNINDEX=pre, query=query, k=2)
Both Annoy and HNSW perform searches based on the Euclidean distance by default.
Searching by Manhattan distance is done by simply setting distance="Manhattan" in AnnoyParam() or HnswParam().
Users are referred to the documentation of each function for specific details on the available arguments.
Both Annoy and HNSW generate indexing structures - a forest of trees and series of graphs, respectively -
that are saved to file when calling buildIndex().
By default, this file is located in tempdir()1 On HPC file systems, you can change TEMPDIR to a location that is more amenable to concurrent access. and will be removed when the session finishes.
AnnoyIndex_path(pre)
## [1] "D:\\biocbuild\\bbs-3.14-bioc\\tmpdir\\RtmpKWPENZ\\file3988b7419e.idx"
If the index is to persist across sessions, the path of the index file can be directly specified in buildIndex.
This can be used to construct an index object directly using the relevant constructors, e.g., AnnoyIndex(), HnswIndex().
However, it becomes the responsibility of the user to clean up any temporary indexing files after calculations are complete.
sessionInfo()
## R version 4.1.1 (2021-08-10)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows Server x64 (build 17763)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=C
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] BiocNeighbors_1.12.0 knitr_1.36 BiocStyle_2.22.0
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.7 magrittr_2.0.1 BiocGenerics_0.40.0
## [4] BiocParallel_1.28.0 lattice_0.20-45 R6_2.5.1
## [7] rlang_0.4.12 fastmap_1.1.0 stringr_1.4.0
## [10] tools_4.1.1 parallel_4.1.1 grid_4.1.1
## [13] xfun_0.27 jquerylib_0.1.4 htmltools_0.5.2
## [16] yaml_2.2.1 digest_0.6.28 bookdown_0.24
## [19] Matrix_1.3-4 BiocManager_1.30.16 S4Vectors_0.32.0
## [22] sass_0.4.0 evaluate_0.14 rmarkdown_2.11
## [25] stringi_1.7.5 compiler_4.1.1 bslib_0.3.1
## [28] stats4_4.1.1 jsonlite_1.7.2