BiocNeighbors 1.10.0
The BiocNeighbors package provides several algorithms for approximate neighbor searches:
These methods complement the exact algorithms described previously.
Again, it is straightforward to switch from one algorithm to another by simply changing the BNPARAM argument in findKNN and queryKNN.
We perform the k-nearest neighbors search with the Annoy algorithm by specifying BNPARAM=AnnoyParam().
nobs <- 10000
ndim <- 20
data <- matrix(runif(nobs*ndim), ncol=ndim)
fout <- findKNN(data, k=10, BNPARAM=AnnoyParam())
head(fout$index)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 2058 8583 2729 4354 5508 6397 7357 3262 4010 8446
## [2,] 4318 2397 9828 5949 9518 5283 8595 2716 6275 4289
## [3,] 7427 112 7725 188 6884 5177 6281 7469 3075 4396
## [4,] 9918 4779 4346 4730 2564 6460 8494 5580 110 7868
## [5,] 8850 6098 6622 9433 8338 7286 3181 5043 6061 2445
## [6,] 2896 824 1144 7969 2335 552 4366 156 177 7693
head(fout$distance)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 0.8414909 0.8698932 0.9355368 0.9541349 0.9717639 0.9991492 1.0364299
## [2,] 0.8837594 0.9832281 1.0007690 1.0060079 1.0102490 1.0112789 1.0447117
## [3,] 0.9199062 0.9470513 1.0197800 1.0204711 1.0504456 1.0727901 1.0770069
## [4,] 0.7379470 0.8063428 0.8113312 0.8561726 0.8616189 0.8751896 0.8967044
## [5,] 0.9775219 1.0697929 1.0967655 1.1031532 1.1066418 1.1163386 1.1320385
## [6,] 0.9128596 0.9900898 0.9991747 1.0269202 1.0584425 1.0603285 1.0850970
## [,8] [,9] [,10]
## [1,] 1.0367655 1.0437986 1.0546287
## [2,] 1.0605900 1.0618711 1.0711055
## [3,] 1.1224986 1.1257536 1.1304235
## [4,] 0.9294451 0.9345718 0.9384831
## [5,] 1.1427239 1.1543937 1.1700542
## [6,] 1.0867983 1.1067376 1.1250880
We can also identify the k-nearest neighbors in one dataset based on query points in another dataset.
nquery <- 1000
ndim <- 20
query <- matrix(runif(nquery*ndim), ncol=ndim)
qout <- queryKNN(data, query, k=5, BNPARAM=AnnoyParam())
head(qout$index)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 9215 4436 6180 9154 2566
## [2,] 1552 1741 1767 3431 1836
## [3,] 3886 1074 5290 3572 7506
## [4,] 188 6120 10 8273 6874
## [5,] 4147 7623 2084 5674 8640
## [6,] 1523 3040 250 9290 6846
head(qout$distance)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.9506123 1.0106703 1.0128031 1.0335578 1.0427752
## [2,] 0.8683564 0.8903276 0.9439428 1.0131069 1.0594602
## [3,] 0.9215837 0.9470725 1.0127544 1.0229198 1.0231688
## [4,] 0.8339254 0.8486065 0.9568959 0.9866970 1.0023173
## [5,] 0.8708979 0.9105967 0.9178559 0.9603201 0.9961723
## [6,] 0.9792755 0.9906029 1.0066026 1.0443240 1.0502740
It is similarly easy to use the HNSW algorithm by setting BNPARAM=HnswParam().
Most of the options described for the exact methods are also applicable here. For example:
subset to identify neighbors for a subset of points.get.distance to avoid retrieving distances when unnecessary.BPPARAM to parallelize the calculations across multiple workers.BNINDEX to build the forest once for a given data set and re-use it across calls.The use of a pre-built BNINDEX is illustrated below:
pre <- buildIndex(data, BNPARAM=AnnoyParam())
out1 <- findKNN(BNINDEX=pre, k=5)
out2 <- queryKNN(BNINDEX=pre, query=query, k=2)
Both Annoy and HNSW perform searches based on the Euclidean distance by default.
Searching by Manhattan distance is done by simply setting distance="Manhattan" in AnnoyParam() or HnswParam().
Users are referred to the documentation of each function for specific details on the available arguments.
Both Annoy and HNSW generate indexing structures - a forest of trees and series of graphs, respectively -
that are saved to file when calling buildIndex().
By default, this file is located in tempdir()1 On HPC file systems, you can change TEMPDIR to a location that is more amenable to concurrent access. and will be removed when the session finishes.
AnnoyIndex_path(pre)
## [1] "D:\\biocbuild\\bbs-3.13-bioc\\tmpdir\\RtmpawNBJG\\file3a4865a17989.idx"
If the index is to persist across sessions, the path of the index file can be directly specified in buildIndex.
This can be used to construct an index object directly using the relevant constructors, e.g., AnnoyIndex(), HnswIndex().
However, it becomes the responsibility of the user to clean up any temporary indexing files after calculations are complete.
sessionInfo()
## R version 4.1.0 RC (2021-05-10 r80283)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows Server x64 (build 17763)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=C
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] BiocNeighbors_1.10.0 knitr_1.33 BiocStyle_2.20.0
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.6 magrittr_2.0.1 BiocGenerics_0.38.0
## [4] BiocParallel_1.26.0 lattice_0.20-44 R6_2.5.0
## [7] rlang_0.4.11 stringr_1.4.0 tools_4.1.0
## [10] parallel_4.1.0 grid_4.1.0 xfun_0.23
## [13] jquerylib_0.1.4 htmltools_0.5.1.1 yaml_2.2.1
## [16] digest_0.6.27 bookdown_0.22 Matrix_1.3-3
## [19] BiocManager_1.30.15 S4Vectors_0.30.0 sass_0.4.0
## [22] evaluate_0.14 rmarkdown_2.8 stringi_1.6.2
## [25] compiler_4.1.0 bslib_0.2.5.1 stats4_4.1.0
## [28] jsonlite_1.7.2