| kmeansClassify {twoddpcr} | R Documentation |
ddpcrWell or
ddpcrPlate object, or in a data frame.If droplets is a data frame, the droplets are classified
using the k-means clustering algorithm.
For ddpcrWell, the droplets are classified by using the
k-means clustering algorithm.
For ddpcrPlate, all of the wells are combined and
classified, with this new classification assigned to the
ddpcrPlate object.
kmeansClassify(droplets, centres = matrix(c(0, 0, 10000, 0, 0, 7000, 10000, 7000), ncol = 2, byrow = TRUE), ...) ## S4 method for signature 'data.frame' kmeansClassify(droplets, centres = matrix(c(0, 0, 10000, 0, 0, 7000, 10000, 7000), ncol = 2, byrow = TRUE), fullTable = TRUE) ## S4 method for signature 'ddpcrWell' kmeansClassify(droplets, centres = matrix(c(0, 0, 10000, 0, 0, 7000, 10000, 7000), ncol = 2, byrow = TRUE)) ## S4 method for signature 'ddpcrPlate' kmeansClassify(droplets, centres = matrix(c(0, 0, 10000, 0, 0, 7000, 10000, 7000), ncol = 2, byrow = TRUE))
droplets |
A |
centres |
Either:
Defaults to |
... |
Other options depending on the type of |
fullTable |
If |
An object with the new classification.
If droplets is a data frame, a list is returned with the
following components:
data |
A data frame or vector corresponding to the classification. |
centres |
A data frame listing the final centre points from the k-means algorithm with the corresponding cluster labels. |
Anthony Chiu, anthony.chiu@cruk.manchester.ac.uk
This method uses the kmeans function.
To manually set and retrieve classifications, use the
wellClassification, plateClassification and
plateClassificationMethod methods.
For a supervised classification approach, one may want to consider
knnClassify.
### Use the KRASdata dataset for all of these examples.
## Use K-means clustering to classify droplets into four (the default
## number) classes.
aWell <- kmeansClassify(KRASdata[["E03"]])
## We can look the the classification or the centres.
head(aWell$data)
aWell$centres
## Specify 3 centres for a different sample in KRASdata.
aWell <- kmeansClassify(KRASdata[["H04"]], centres=3)
head(aWell$data)
## We can be more specific with the choice of centres.
aWell <- kmeansClassify(KRASdata[["H04"]],
centres=matrix(c(5000, 1500, 5500, 7000, 10000,
2000), ncol=2, byrow=TRUE))
## We can use \code{ddpcrWell} objects directly as a parameter.
aWell <- ddpcrWell(well=KRASdata[["E03"]])
kmeansClassify(aWell)
## We can take multiple samples in a \code{ddpcrPlate} object and
## classify everything together.
krasPlate <- ddpcrPlate(wells=KRASdata)
kmeansClassify(krasPlate)