| gridClassify {twoddpcr} | R Documentation |
Classify droplets as "NN", "NP", "PN" or "PP". The
classification is based on upper bounds for negative readings and lower
bounds for positive readings; see the details and parameters for more
detail. If required (see the trainingData parameter), droplets that
are not classified will be given the label "N/A".
gridClassify(droplets, ch1NNThreshold = 6500, ch2NNThreshold = 1900, ch1NPThreshold = 6500, ch2NPThreshold = 5000, ch1PNThreshold = 10000, ch2PNThreshold = 2900, ch1PPThreshold = 7500, ch2PPThreshold = 5000, ...) ## S4 method for signature 'data.frame' gridClassify(droplets, ch1NNThreshold = 6500, ch2NNThreshold = 1900, ch1NPThreshold = 6500, ch2NPThreshold = 5000, ch1PNThreshold = 10000, ch2PNThreshold = 2900, ch1PPThreshold = 7500, ch2PPThreshold = 5000, trainingData = TRUE, fullTable = TRUE, naLabel = ddpcr$rain) ## S4 method for signature 'ddpcrWell' gridClassify(droplets, ch1NNThreshold = 6500, ch2NNThreshold = 1900, ch1NPThreshold = 6500, ch2NPThreshold = 5000, ch1PNThreshold = 10000, ch2PNThreshold = 2900, ch1PPThreshold = 7500, ch2PPThreshold = 5000, classMethodLabel = "grid", naLabel = ddpcr$rain) ## S4 method for signature 'ddpcrPlate' gridClassify(droplets, ch1NNThreshold = 6500, ch2NNThreshold = 1900, ch1NPThreshold = 6500, ch2NPThreshold = 5000, ch1PNThreshold = 10000, ch2PNThreshold = 2900, ch1PPThreshold = 7500, ch2PPThreshold = 5000, classMethodLabel = "grid", naLabel = ddpcr$rain)
droplets |
A |
ch1NNThreshold |
The channel 1 upper bound for the NN class. Defaults to 6500. |
ch2NNThreshold |
The channel 2 upper bound for the NN class. Defaults to 1900. |
ch1NPThreshold |
The channel 1 upper bound for the NP class. Defaults to 6500. |
ch2NPThreshold |
The channel 2 lower bound for the NP class. Defaults to 5000. |
ch1PNThreshold |
The channel 1 lower bound for the PN class. Defaults to 10000. |
ch2PNThreshold |
The channel 2 upper bound for the PN class. Defaults to 2900. |
ch1PPThreshold |
The channel 1 lower bound for the PP class. Defaults to 7500. |
ch2PPThreshold |
The channel 2 lower bound for the PP class. Defaults to 5000. |
... |
Other options depending on the type of |
trainingData |
Whether to use the output as training data. If
|
fullTable |
Whether to return a data frame including amplitude
figures. If |
naLabel |
The label to use for unclassified droplets. Should be either ddpcr$na ("N/A") or ddpcr$rain ("Rain"). Defaults to ddpcr$rain. |
classMethodLabel |
A name (as a character string) of the classification method. Defaults to "grid". |
The threshold parameters correspond to those in the
following diagram:
Ch1 ^ | |
| | |
| PN | |
| | | PP
e|________| |
g|........:..|_________
| : :
c|.............._______
a|______ : : |
| | : : | NP
| NN | : : |
| | : : |
--------------------->
b f h d Ch2
Specifically:
ch1NNThreshold,
ch2NNThreshold,
ch1PNThreshold,
ch2PNThreshold,
ch1NPThreshold,
ch2NPThreshold,
ch1PPThreshold,
ch2PPThreshold.
If droplets is a data frame, return a data frame or factor
(depending on the trainingData and fullTable parameters) with
a classification for droplets in the chosen regions.
If droplets is a ddpcrWell object, return
a ddpcrWell object with the appropriate classification.
If droplets is a ddpcrPlate object, return
a ddpcrPlate object with the appropriate classification.
Anthony Chiu, anthony.chiu@cruk.manchester.ac.uk
thresholdClassify is a special case of this
function.
removeDropletClasses retrieves a data frame with the
"N/A" (and "Rain") droplets removed. This can used for transforming
a grid-like classification into usable training data.
## Use a grid to set training data for a data frame.
sgCl <- gridClassify(KRASdata[["E03"]],
ch1NNThreshold=5700, ch2NNThreshold=1700,
ch1NPThreshold=5400, ch2NPThreshold=5700,
ch1PNThreshold=9700, ch2PNThreshold=2050,
ch1PPThreshold=7200, ch2PPThreshold=4800)
str(sgCl)
## For data frame only, we can set the trainingData flag to FALSE so that
## the unclassified droplets are retained but labelled as "N/A"
sgCl <- gridClassify(KRASdata[["E03"]],
ch1NNThreshold=5700, ch2NNThreshold=1700,
ch1NPThreshold=5400, ch2NPThreshold=5700,
ch1PNThreshold=9700, ch2PNThreshold=2050,
ch1PPThreshold=7200, ch2PPThreshold=4800,
trainingData=FALSE)
dropletPlot(sgCl, cMethod="class")
## The same works for ddpcrWell objects.
aWell <- ddpcrWell(well=KRASdata[["E03"]])
aWell <- gridClassify(aWell,
ch1NNThreshold=5700, ch2NNThreshold=1700,
ch1NPThreshold=5400, ch2NPThreshold=5700,
ch1PNThreshold=9700, ch2PNThreshold=2050,
ch1PPThreshold=7200, ch2PPThreshold=4800)
str(aWell)
## ddpcrPlate objects work in exactly the same way.
krasPlate <- ddpcrPlate(wells=KRASdata)
krasPlate <- gridClassify(krasPlate)
lapply(plateClassification(krasPlate, withAmplitudes=TRUE), head, n=1)
## The default classification method (column name) is 'gridClassify',
## which may be a bit long. It can be changed.
krasPlate <- gridClassify(krasPlate, classMethodLabel="training")
lapply(plateClassification(krasPlate, withAmplitudes=TRUE), head, n=1)