globalNullModel {netboxr}R Documentation

Generate global null model p-value

Description

Randomly select the same number of nodes in the largest component of netbox result as a new gene candidate list and repeat multiple times to produce a distribution of node size and edge numbers. This distribution will be used to produce global p-value of netbox result based on the node size or edge numbers of largest component in the final network result.

Usage

globalNullModel(
  netboxGraph,
  networkGraph,
  directed,
  iterations = 30,
  numOfGenes = NULL,
  pValueAdj = "BH",
  pValueCutoff = 0.05
)

Arguments

netboxGraph

A vector containing candidate gene list

networkGraph

An igraph graph object

directed

TRUE or FALSE

iterations

TRUE of FALSE

numOfGenes

A numeric value

pValueAdj

A string for p-value correction method c('BH, 'Bonferroni')

pValueCutoff

A numeric value c(0,1)

Value

a list with four lists (i.e. netboxOutput, nodeType, moduleMembership, neighborData)

Author(s)

Eric Minwei Liu, emliu.research@gmail.com

Examples

data(netbox2010)

sifNetwork<-netbox2010$network
graphReduced <- networkSimplify(sifNetwork,directed = FALSE) 

geneList<-as.character(netbox2010$geneList)

results<-geneConnector(geneList=geneList,networkGraph=graphReduced,
                      pValueAdj='BH',pValueCutoff=0.05,
                      communityMethod='lec',keepIsolatedNodes=FALSE)

names(results)

# Suggested 100 iterations. 
# Use 5 interations in the exampel to save running time.
# globalTest <- globalNullModel(netboxGraph=results$netboxGraph, 
#                              networkGraph=graphReduced, 
#                              iterations=5, numOfGenes = 274)

[Package netboxr version 0.99.988 Index]