| iterateIntervals {hapFabia} | R Documentation |
hapFabiaiterateIntervals: R implementation of iterateIntervals.
Loops over all intervals and calls hapFabia and then stores the
results. Intervals have been
generated by split_sparse_matrix.
iterateIntervals(startRun=1,endRun,shift=5000,intervalSize=10000, annotationFile=NULL,fileName,prefixPath="", sparseMatrixPostfix="_mat",annotPostfix="_annot.txt", individualsPostfix="_individuals.txt",individuals=0, lowerBP=0,upperBP=0.05,p=10,iter=40,quant=0.01,eps=1e-5, alpha=0.03,cyc=50,non_negative=1,write_file=0,norm=0, lap=100.0,IBDsegmentLength=50,Lt = 0.1,Zt = 0.2, thresCount=1e-5,mintagSNVsFactor=3/4,pMAF=0.03, haplotypes=FALSE,cut=0.8,procMinIndivids=0.1,thresPrune=1e-3, simv="minD",minTagSNVs=6,minIndivid=2,avSNVsDist=100,SNVclusterLength=100)
startRun |
first interval. |
endRun |
last interval. |
shift |
distance between starts of adjacent intervals. |
intervalSize |
number of SNVs in a interval. |
annotationFile |
file name of the annotation file for the individuals. |
fileName |
passed to hapFabia: file name of the genotype matrix in sparse format. |
prefixPath |
passed to hapFabia: path to the genotype file. |
sparseMatrixPostfix |
passed to hapFabia: postfix string for the sparse matrix. |
annotPostfix |
passed to hapFabia: postfix string for the SNV annotation file. |
individualsPostfix |
passed to hapFabia: postfix string for the file containing the names of the individuals. |
individuals |
passed to hapFabia: vector of individuals which are included into the analysis; default = 0 (all individuals). |
lowerBP |
passed to hapFabia: lower bound on minor allele frequencies (MAF); however at least two occurrences are required to remove private SNVs. |
upperBP |
passed to hapFabia: upper bound on minor allele frequencies (MAF) to extract rare variants. |
p |
passed to hapFabia: number of biclusters per iteration. |
iter |
passed to hapFabia: number of iterations. |
quant |
passed to hapFabia: percentage of loadings L to remove in each iteration. |
eps |
passed to hapFabia: lower bound for variational parameter lapla; default 1e-5. |
alpha |
passed to hapFabia: sparseness of the loadings; default = 0.03. |
cyc |
passed to hapFabia: number of cycles per iterations; default 50. |
non_negative |
passed to hapFabia: non-negative factors and loadings if non_negative = 1; default = 1 (yes). |
write_file |
passed to hapFabia: results are written to files (L in sparse format), default = 0 (not written). |
norm |
passed to hapFabia: data normalization; default 0 (no normalization). |
lap |
passed to hapFabia: minimal value of the variational parameter; default 100.0. |
IBDsegmentLength |
passed to hapFabia: typical IBD segment length in kbp. |
Lt |
passed to hapFabia: percentage of largest Ls to consider for IBD segment extraction. |
Zt |
passed to hapFabia: percentage of largest Zs to consider for IBD segment extraction. |
thresCount |
passed to hapFabia: p-value of random histogram hit; default 1e-5. |
mintagSNVsFactor |
passed to hapFabia: percentage of IBD segment overlap; default 3/4. |
pMAF |
passed to hapFabia: averaged and corrected (for non-uniform distributions) minor allele frequency. |
haplotypes |
passed to hapFabia: haplotypes = TRUE then phased genotypes meaning two chromosomes per individual otherwise unphased genotypes. |
cut |
passed to hapFabia: cutoff for merging IBD segments after a hierarchical clustering; default 0.8. |
procMinIndivids |
passed to hapFabia: percentage of cluster individuals a tagSNV must tag to be considered as tagSNV for the IBD segment. |
thresPrune |
passed to hapFabia: threshold for pruning border tagSNVs based on an exponential distribution where border tagSNVs with large distances to the next tagSNV are pruned. |
simv |
passed to hapFabia: similarity measure for merging clusters: |
minTagSNVs |
passed to hapFabia: minimum matching tagSNVs for cluster similarity; otherwise the similarity is set to zero. |
minIndivid |
passed to hapFabia: minimum matching individuals for cluster similarity; otherwise the similarity is set to zero. |
avSNVsDist |
passed to hapFabia: average distance between SNVs in
base pairs - used
together with |
SNVclusterLength |
passed to hapFabia: if |
Implementation in R.
Reads annotation of the individuals if available,
then calls hapFabia and stores its results.
Results are saved in EXCEL format and as R
binaries.
iterateIntervals loops over all intervals
and calls hapFabia and then stores the
results. Intervals have been
generated by split_sparse_matrix.
The results are the indentified IBD segments which are
stored separately per interval.
A subsequent analysis first calls
identifyDuplicates to identify IBD segments that
are found more than one time and then analyzes the IBD segments by
analyzeIBDsegments.
The SNV annotation file ..._annot.txt contains:
first line: number individuals;
second line: number SNVs;
for each SNV a line containing following field that are blank separated: "chromosome", "physical position", "snvNames", "snvMajor", "snvMinor", "quality", "pass", "info of vcf file", "fields in vcf file", "frequency", "0/1: 1 is changed if major allele is actually minor allele".
The individuals annotation file,
which name is give to annotationFile,
contains per individual a tab separated line with
id;
subPopulation;
population;
platform.
Loop over DNA intervals with a call of hapFabia
Sepp Hochreiter
S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-1527, 2010.
IBDsegment-class,
IBDsegmentList-class,
analyzeIBDsegments,
compareIBDsegmentLists,
extractIBDsegments,
findDenseRegions,
hapFabia,
hapFabiaVersion,
hapRes,
chr1ASW1000G,
IBDsegmentList2excel,
identifyDuplicates,
iterateIntervals,
makePipelineFile,
matrixPlot,
mergeIBDsegmentLists,
mergedIBDsegmentList,
plotIBDsegment,
res,
setAnnotation,
setStatistics,
sim,
simu,
simulateIBDsegmentsFabia,
simulateIBDsegments,
split_sparse_matrix,
toolsFactorizationClass,
vcftoFABIA
## Not run:
###here an example of the the automatically generated pipeline
### with: shiftSize=5000,intervalSize=10000,fileName="filename"
#####define intervals, overlap, filename #######
shiftSize <- 5000
intervalSize <- 10000
fileName="filename" # without type
haplotypes <- TRUE
dosage <- FALSE
#####load library#######
library(hapFabia)
#####convert from .vcf to _mat.txt#######
vcftoFABIA(fileName=fileName)
#####copy haplotype, genotype, or dosage matrix to matrix#######
if (haplotypes) {
file.copy(paste(fileName,"_matH.txt",sep=""), paste(fileName,"_mat.txt",sep=""))
} else {
if (dosage) {
file.copy(paste(fileName,"_matD.txt",sep=""), paste(fileName,"_mat.txt",sep=""))
} else {
file.copy(paste(fileName,"_matG.txt",sep=""), paste(fileName,"_mat.txt",sep=""))
}
}
#####split/ generate intervals#######
split_sparse_matrix(fileName=fileName,intervalSize=intervalSize,
shiftSize=shiftSize,annotation=TRUE)
#####compute how many intervals we have#######
ina <- as.numeric(readLines(paste(fileName,"_mat.txt",sep=""),n=2))
noSNVs <- ina[2]
over <- intervalSize%/%shiftSize
N1 <- noSNVs%/%shiftSize
endRunA <- (N1-over+2)
#####analyze each interval#######
#####may be done by parallel runs#######
iterateIntervals(startRun=1,endRun=endRunA,shift=shiftSize,
intervalSize=intervalSize,fileName=fileName,individuals=0,
upperBP=0.05,p=10,iter=40,alpha=0.03,cyc=50,IBDsegmentLength=50,
Lt = 0.1,Zt = 0.2,thresCount=1e-5,mintagSNVsFactor=3/4,
pMAF=0.035,haplotypes=haplotypes,cut=0.8,procMinIndivids=0.1,thresPrune=1e-3,
simv="minD",minTagSNVs=6,minIndivid=2,avSNVsDist=100,SNVclusterLength=100)
#####identify duplicates#######
identifyDuplicates(fileName=fileName,startRun=1,endRun=endRunA,
shift=shiftSize,intervalSize=intervalSize)
#####analyze results; parallel#######
anaRes <- analyzeIBDsegments(fileName=fileName,startRun=1,endRun=endRunA,
shift=shiftSize,intervalSize=intervalSize)
print("Number IBD segments:")
print(anaRes$noIBDsegments)
print("Statistics on IBD segment length in SNVs (all SNVs in the IBD segment):")
print(anaRes$avIBDsegmentLengthSNVS)
print("Statistics on IBD segment length in bp:")
print(anaRes$avIBDsegmentLengthS)
print("Statistics on number of individuals belonging to IBD segments:")
print(anaRes$avnoIndividS)
print("Statistics on number of tagSNVs of IBD segments:")
print(anaRes$avnoTagSNVsS)
print("Statistics on MAF of tagSNVs of IBD segments:")
print(anaRes$avnoFreqS)
print("Statistics on MAF within the group of tagSNVs of IBD segments:")
print(anaRes$avnoGroupFreqS)
print("Statistics on number of changes between major and minor allele frequency:")
print(anaRes$avnotagSNVChangeS)
print("Statistics on number of tagSNVs per individual of an IBD segment:")
print(anaRes$avnotagSNVsPerIndividualS)
print("Statistics on number of individuals that have the minor allele of tagSNVs:")
print(anaRes$avnoindividualPerTagSNVS)
#####load result for interval 50#######
posAll <- 50 # (50-1)*5000 = 245000: interval 245000 to 255000
start <- (posAll-1)*shiftSize
end <- start + intervalSize
pRange <- paste("_",format(start,scientific=FALSE),"_",
format(end,scientific=FALSE),sep="")
load(file=paste(fileName,pRange,"_resAnno",".Rda",sep=""))
IBDsegmentList <- resHapFabia$mergedIBDsegmentList # $
summary(IBDsegmentList)
#####plot IBD segments in interval 50#######
plot(IBDsegmentList,filename=paste(fileName,pRange,"_mat",sep=""))
##attention: filename without type ".txt"
#####plot the first IBD segment in interval 50#######
IBDsegment <- IBDsegmentList[[1]]
plot(IBDsegment,filename=paste(fileName,pRange,"_mat",sep=""))
##attention: filename without type ".txt"
## End(Not run)
#Work in a temporary directory.
old_dir <- getwd()
setwd(tempdir())
# Load data and write to vcf file.
data(chr1ASW1000G)
write(chr1ASW1000G,file="chr1ASW1000G.vcf")
#Create the analysis pipeline for haplotype data (1000Genomes)
makePipelineFile(fileName="chr1ASW1000G",shiftSize=500,intervalSize=1000,haplotypes=TRUE)
source("pipeline.R")
# Following files are produced:
list.files(pattern="chr1")
# Next we load interval 5 and there the first and second IBD segment
posAll <- 5
start <- (posAll-1)*shiftSize
end <- start + intervalSize
pRange <- paste("_",format(start,scientific=FALSE),"_",format(end,scientific=FALSE),sep="")
load(file=paste(fileName,pRange,"_resAnno",".Rda",sep=""))
IBDsegmentList <- resHapFabia$mergedIBDsegmentList
summary(IBDsegmentList)
IBDsegment1 <- IBDsegmentList[[1]]
summary(IBDsegment1)
IBDsegment2 <- IBDsegmentList[[2]]
summary(IBDsegment2)
#Plot the first IBD segment in interval 5
plot(IBDsegment1,filename=paste(fileName,pRange,"_mat",sep=""))
#Plot the second IBD segment in interval 5
plot(IBDsegment2,filename=paste(fileName,pRange,"_mat",sep=""))
setwd(old_dir)