| logLikelihoodcelda_CG {celda} | R Documentation |
Calculates the log likelihood for user-provided cell population and feature module clusters using the 'celda_CG()' model.
logLikelihoodcelda_CG( counts, sampleLabel, z, y, K, L, alpha, beta, delta, gamma )
counts |
Integer matrix. Rows represent features and columns represent cells. |
sampleLabel |
Vector or factor. Denotes the sample label for each cell (column) in the count matrix. |
z |
Numeric vector. Denotes cell population labels. |
y |
Numeric vector. Denotes feature module labels. |
K |
Integer. Number of cell populations. |
L |
Integer. Number of feature modules. |
alpha |
Numeric. Concentration parameter for Theta. Adds a pseudocount to each cell population in each sample. Default 1. |
beta |
Numeric. Concentration parameter for Phi. Adds a pseudocount to each feature module in each cell population. Default 1. |
delta |
Numeric. Concentration parameter for Psi. Adds a pseudocount to each feature in each module. Default 1. |
gamma |
Numeric. Concentration parameter for Eta. Adds a pseudocount to the number of features in each module. Default 1. |
The log likelihood for the given cluster assignments
'celda_CG()' for clustering features and cells
data(celdaCGSim)
loglik <- logLikelihoodcelda_CG(celdaCGSim$counts,
sampleLabel = celdaCGSim$sampleLabel,
z = celdaCGSim$z,
y = celdaCGSim$y,
K = celdaCGSim$K,
L = celdaCGSim$L,
alpha = celdaCGSim$alpha,
beta = celdaCGSim$beta,
gamma = celdaCGSim$gamma,
delta = celdaCGSim$delta)
loglik <- logLikelihood(celdaCGSim$counts,
model = "celda_CG",
sampleLabel = celdaCGSim$sampleLabel,
z = celdaCGSim$z,
y = celdaCGSim$y,
K = celdaCGSim$K,
L = celdaCGSim$L,
alpha = celdaCGSim$alpha,
beta = celdaCGSim$beta,
gamma = celdaCGSim$gamma,
delta = celdaCGSim$delta)