| clusters_cor {ViSEAGO} | R Documentation |
Build a distance or correlation matrix between partitions from dendrograms.
clusters_cor(clusters, method = "adjusted.rand") ## S4 method for signature 'list,character' clusters_cor(clusters, method = "adjusted.rand")
clusters |
a |
method |
available methods ("vi", "nmi", "split.join", "rand", or "adjusted.rand") from igraph package |
a distance or a correlation matrix.
Csardi G, Nepusz T: The igraph software package for complex network research, InterJournal, Complex Systems 1695. 2006. http://igraph.org.
Other GO_clusters:
GO_clusters-class,
GOclusters_heatmap(),
compare_clusters(),
show_heatmap(),
show_table()
# load example object
data(
myGOs,
package="ViSEAGO"
)
## Not run:
# compute Semantic Similarity (SS)
myGOs<-ViSEAGO::compute_SS_distances(
myGOs,
distance=c("Resnik","Lin","Rel","Jiang","Wang")
)
# Resnik distance GO terms heatmap
Resnik_clusters_wardD2<-ViSEAGO::GOterms_heatmap(
myGOs,
showIC=TRUE,
showGOlabels=TRUE,
GO.tree=list(
tree=list(
distance="Resnik",
aggreg.method="ward.D2"
),
cut=list(
dynamic=list(
deepSplit=2,
minClusterSize =2
)
)
),
samples.tree=NULL
)
# Lin distance GO terms heatmap
Lin_clusters_wardD2<-ViSEAGO::GOterms_heatmap(
myGOs,
showIC=TRUE,
showGOlabels=TRUE,
GO.tree=list(
tree=list(
distance="Lin",
aggreg.method="ward.D2"
),
cut=list(
dynamic=list(
deepSplit=2,
minClusterSize =2
)
)
),
samples.tree=NULL
)
# Resnik distance GO terms heatmap
Rel_clusters_wardD2<-ViSEAGO::GOterms_heatmap(
myGOs,
showIC=TRUE,
showGOlabels=TRUE,
GO.tree=list(
tree=list(
distance="Rel",
aggreg.method="ward.D2"
),
cut=list(
dynamic=list(
deepSplit=2,
minClusterSize =2
)
)
),
samples.tree=NULL
)
# Resnik distance GO terms heatmap
Jiang_clusters_wardD2<-ViSEAGO::GOterms_heatmap(
myGOs,
showIC=TRUE,
showGOlabels=TRUE,
GO.tree=list(
tree=list(
distance="Jiang",
aggreg.method="ward.D2"
),
cut=list(
dynamic=list(
deepSplit=2,
minClusterSize =2
)
)
),
samples.tree=NULL
)
# Resnik distance GO terms heatmap
Wang_clusters_wardD2<-ViSEAGO::GOterms_heatmap(
myGOs,
showIC=TRUE,
showGOlabels=TRUE,
GO.tree=list(
tree=list(
distance="Wang",
aggreg.method="ward.D2"
),
cut=list(
dynamic=list(
deepSplit=2,
minClusterSize =2
)
)
),
samples.tree=NULL
)
## End(Not run)
# clusters to compare
clusters<-list(
Resnik="Resnik_clusters_wardD2",
Lin="Lin_clusters_wardD2",
Rel="Rel_clusters_wardD2",
Jiang="Jiang_clusters_wardD2",
Wang="Wang_clusters_wardD2"
)
## Not run:
# global dendrogram clustering correlation
clust_cor<-ViSEAGO::clusters_cor(
clusters,
method="adjusted.rand"
)
## End(Not run)