| Maaslin2 {Maaslin2} | R Documentation |
MaAsLin2 was developed to find associations between microbiome multi'omics features and complex metadata in population-scale epidemiological studies. The software includes multiple analysis methods, normalization, and transform options to customize analysis for your specific study.
Maaslin2(
input_data,
input_metadata,
output,
min_abundance = 0.0,
min_prevalence = 0.1,
normalization = "TSS",
transform = "LOG",
analysis_method = "LM",
max_significance = 0.25,
random_effects = NULL,
fixed_effects = NULL,
correction = "BH",
standardize = TRUE,
cores = 1,
plot_heatmap = TRUE,
plot_scatter = TRUE,
heatmap_first_n = 50
)
input_data |
The tab-delimited input file of features. |
input_metadata |
The tab-delimited input file of metadata. |
output |
The output folder to write results. |
min_abundance |
The minimum abundance for each feature. |
min_prevalence |
The minimum percent of samples for which a feature is detected at minimum abundance. |
max_significance |
The q-value threshold for significance. |
normalization |
The normalization method to apply. |
transform |
The transform to apply. |
analysis_method |
The analysis method to apply. |
random_effects |
The random effects for the model, comma-delimited for multiple effects. |
fixed_effects |
The fixed effects for the model, comma-delimited for multiple effects. |
correction |
The correction method for computing the q-value. |
standardize |
Apply z-score so continuous metadata are on the same scale. |
plot_heatmap |
Generate a heatmap for the significant associations. |
heatmap_first_n |
In heatmap, plot top N features with significant associations. |
plot_scatter |
Generate scatter plots for the significant associations. |
cores |
The number of R processes to run in parallel. |
Data.frame containing the results from applying the model.
Himel Mallick<hmallick@broadinstitute.org>,
Ali Rahnavard<rah@broadinstitute.org>,
Maintainers: Lauren McIver<lauren.j.mciver@gmail.com>,
input_data <- system.file(
'extdata','HMP2_taxonomy.tsv', package="Maaslin2")
input_metadata <-system.file(
'extdata','HMP2_metadata.tsv', package="Maaslin2")
fit_data <- Maaslin2(
input_data, input_metadata,'demo_output', transform = "AST",
fixed_effects = c('diagnosis', 'dysbiosisnonIBD','dysbiosisUC','dysbiosisCD', 'antibiotics', 'age'),
random_effects = c('site', 'subject'),
standardize = FALSE)