| enrichment_map {GeneTonic} | R Documentation |
Generates a graph for the enrichment map, combining information from res_enrich
and res_de. This object can be further plotted, e.g. statically via
igraph::plot.igraph(), or dynamically via
visNetwork::visIgraph()
enrichment_map( res_enrich, res_de, annotation_obj, n_gs = 50, gs_ids = NULL, overlap_threshold = 0.1, scale_edges_width = 200, scale_nodes_size = 5, color_by = "gs_pvalue" )
res_enrich |
A |
res_de |
A |
annotation_obj |
A |
n_gs |
Integer value, corresponding to the maximal number of gene sets to be displayed |
gs_ids |
Character vector, containing a subset of |
overlap_threshold |
Numeric value, between 0 and 1. Defines the threshold to be used for removing edges in the enrichment map - edges below this value will be excluded from the final graph. Defaults to 0.1. |
scale_edges_width |
A numeric value, to define the scaling factor for the
edges between nodes. Defaults to 200 (works well chained to |
scale_nodes_size |
A numeric value, to define the scaling factor for the
node sizes. Defaults to 5 - works well chained to |
color_by |
Character, specifying the column of |
An igraph object to be further manipulated or processed/plotted
GeneTonic() embeds an interactive visualization for the enrichment map
library("macrophage")
library("DESeq2")
library("org.Hs.eg.db")
library("AnnotationDbi")
# dds object
data("gse", package = "macrophage")
dds_macrophage <- DESeqDataSet(gse, design = ~line + condition)
rownames(dds_macrophage) <- substr(rownames(dds_macrophage), 1, 15)
dds_macrophage <- estimateSizeFactors(dds_macrophage)
# annotation object
anno_df <- data.frame(
gene_id = rownames(dds_macrophage),
gene_name = mapIds(org.Hs.eg.db,
keys = rownames(dds_macrophage),
column = "SYMBOL",
keytype = "ENSEMBL"),
stringsAsFactors = FALSE,
row.names = rownames(dds_macrophage)
)
# res object
data(res_de_macrophage, package = "GeneTonic")
res_de <- res_macrophage_IFNg_vs_naive
# res_enrich object
data(res_enrich_macrophage, package = "GeneTonic")
res_enrich <- shake_topGOtableResult(topgoDE_macrophage_IFNg_vs_naive)
res_enrich <- get_aggrscores(res_enrich, res_de, anno_df)
em <- enrichment_map(res_enrich,
res_de,
anno_df,
n_gs = 20
)
em
# could be viewed interactively with
# library(visNetwork)
# library(magrittr)
# em %>%
# visIgraph() %>%
# visOptions(highlightNearest = list(enabled = TRUE,
# degree = 1,
# hover = TRUE),
# nodesIdSelection = TRUE)