DIAlignR 0.99.12
In this document we are presenting a workflow of retention-time alignment across multiple Targeted-MS (e.g. DIA, SWATH-MS, PRM, SRM) runs using DIAlignR. This tool requires MS2 chromatograms and provides a hybrid approach of global and local alignment to establish correspondence between peaks.
if(!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("DIAlignR")
library(DIAlignR)
Mass-spectrometry files mostly contains spectra. Targeted proteomics workflow identifyies analytes from their chromatographic elution profile. DIAlignR extends the same concept for retention-time (RT) alignment and, therefore, relies on MS2 chromatograms. DIAlignR expects raw chromatogram file (.chrom.mzML) and FDR-scored features (.osw) file.
Example files are available with this package and can be located with this command:
dataPath <- system.file("extdata", package = "DIAlignR")
bash command can be used:OpenSwathWorkflow -in Filename.mzML.gz -tr library.pqp -tr_irt
iRTassays.TraML -out_osw Filename.osw -out_chrom Filename.chrom.mzML
mzR. In such cases mzR would throw an error indicating Invalid cvParam accession "1002746". To avoid this issue, uncompress chromatograms using OpenMS.FileConverter -in Filename.chrom.mzML -in_type 'mzML' -out Filename.chrom.mzML
pyprophet merge --template=library.pqp --out=merged.osw *.osw
pyprophet score --in=merged.osw --classifier=XGBoost --level=ms2 --xeval_num_iter=3 \
--ss_initial_fdr=0.05 --ss_iteration_fdr=0.01
pyprophet peptide --in=merged.osw --context=experiment-wide
mzml directory and merged.osw file in osw directory. The parent folder is given as dataPath to DIAlignR functions.alignTargetedRuns function aligns Proteomics or Metabolomics DIA runs. It expects two directories “osw” and “mzml” at dataPath. It outputs an intensity table where rows specify each analyte and columns specify runs. Use parameter saveFiles = TRUE to have aligned retetion time and intensities saved in the current directory.
runs <- c("hroest_K120809_Strep0%PlasmaBiolRepl2_R04_SW_filt",
"hroest_K120809_Strep10%PlasmaBiolRepl2_R04_SW_filt")
# For specific runs provide their names.
intensityTbl <- alignTargetedRuns(dataPath = dataPath, runs = runs, analyteInGroupLabel = TRUE)
# For specific analytes provide their names.
intensityTbl <- alignTargetedRuns(dataPath = dataPath, runs = NULL,
analytes = c("QFNNTDIVLLEDFQK_3"), analyteInGroupLabel = FALSE)
# For all the analytes in all runs, keep them as NULL.
intensityTbl <- alignTargetedRuns(dataPath = dataPath, runs = NULL, analytes = NULL,
analyteInGroupLabel = TRUE)
For getting alignment object which has aligned indices of XICs getAlignObjs function can be used. Like previous function, it expects two directories “osw” and “mzml” at dataPath. It performs alignment for exactly two runs. In case of refRun is not provided, m-score from osw files is used to select reference run.
runs <- c("hroest_K120809_Strep0%PlasmaBiolRepl2_R04_SW_filt",
"hroest_K120809_Strep10%PlasmaBiolRepl2_R04_SW_filt")
AlignObjLight <- getAlignObjs(analytes = "QFNNTDIVLLEDFQK_3", runs = runs, dataPath = dataPath,
objType = "light")
slotNames(AlignObjLight[["QFNNTDIVLLEDFQK_3"]][[1]])
#> [1] "indexA_aligned" "indexB_aligned" "score"
AlignObjMedium <- getAlignObjs(analytes = "QFNNTDIVLLEDFQK_3", runs = runs, dataPath = dataPath,
objType = "medium")
slotNames(AlignObjMedium[["QFNNTDIVLLEDFQK_3"]][[1]])
#> [1] "s" "path" "indexA_aligned" "indexB_aligned"
#> [5] "score"
We can visualize aligned chromatograms using plotAlignedAnalytes. The top figure is experiment unaligned-XICs, middle one is reference XICs, last figure is experiment run aligned to reference.
runs <- c("hroest_K120809_Strep0%PlasmaBiolRepl2_R04_SW_filt",
"hroest_K120809_Strep10%PlasmaBiolRepl2_R04_SW_filt")
AlignObj <- getAlignObjs(analytes = "QFNNTDIVLLEDFQK_3", runs = runs, dataPath = dataPath)
plotAlignedAnalytes(AlignObj, annotatePeak = TRUE)
We can also visualize the alignment path using plotAlignemntPath function.
library(lattice)
runs <- c("hroest_K120809_Strep0%PlasmaBiolRepl2_R04_SW_filt",
"hroest_K120809_Strep10%PlasmaBiolRepl2_R04_SW_filt")
AlignObjOutput <- getAlignObjs(analytes = "QFNNTDIVLLEDFQK_3", runs = runs,
dataPath = dataPath, objType = "medium")
plotAlignmentPath(AlignObjOutput)
Gupta S, Ahadi S, Zhou W, Röst H. “DIAlignR Provides Precise Retention Time Alignment Across Distant Runs in DIA and Targeted Proteomics.” Mol Cell Proteomics. 2019 Apr;18(4):806-817. doi: https://doi.org/10.1074/mcp.TIR118.001132
sessionInfo()
#> R Under development (unstable) (2020-01-27 r77730)
#> Platform: x86_64-w64-mingw32/x64 (64-bit)
#> Running under: Windows Server 2012 R2 x64 (build 9600)
#>
#> Matrix products: default
#>
#> locale:
#> [1] LC_COLLATE=C
#> [2] LC_CTYPE=English_United States.1252
#> [3] LC_MONETARY=English_United States.1252
#> [4] LC_NUMERIC=C
#> [5] LC_TIME=English_United States.1252
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] lattice_0.20-40 DIAlignR_0.99.12 BiocStyle_2.15.6
#>
#> loaded via a namespace (and not attached):
#> [1] zoo_1.8-7 tidyselect_1.0.0 xfun_0.12
#> [4] purrr_0.3.3 colorspace_1.4-1 vctrs_0.2.4
#> [7] htmltools_0.4.0 yaml_2.2.1 blob_1.2.1
#> [10] rlang_0.4.5 pillar_1.4.3 glue_1.3.1
#> [13] DBI_1.1.0 mzR_2.21.1 RColorBrewer_1.1-2
#> [16] BiocGenerics_0.33.0 bit64_0.9-7 jpeg_0.1-8.1
#> [19] lifecycle_0.2.0 stringr_1.4.0 ProtGenerics_1.19.3
#> [22] munsell_0.5.0 gtable_0.3.0 codetools_0.2-16
#> [25] evaluate_0.14 memoise_1.1.0 latticeExtra_0.6-29
#> [28] labeling_0.3 Biobase_2.47.2 knitr_1.28
#> [31] parallel_4.0.0 Rcpp_1.0.3 scales_1.1.0
#> [34] BiocManager_1.30.10 magick_2.3 farver_2.0.3
#> [37] bit_1.1-15.2 gridExtra_2.3 png_0.1-7
#> [40] ggplot2_3.3.0 digest_0.6.25 stringi_1.4.6
#> [43] bookdown_0.18 dplyr_0.8.5 ncdf4_1.17
#> [46] grid_4.0.0 tools_4.0.0 magrittr_1.5
#> [49] tibble_2.1.3 RSQLite_2.2.0 crayon_1.3.4
#> [52] tidyr_1.0.2 pkgconfig_2.0.3 MASS_7.3-51.5
#> [55] ellipsis_0.3.0 assertthat_0.2.1 rmarkdown_2.1
#> [58] R6_2.4.1 signal_0.7-6 compiler_4.0.0