| prediction {CMA} | R Documentation |
This method constructs the given classifier using the specified training data, gene selection and tuning results.. Subsequently, class labels are predicted for new observations.
For S4 method information, s. classification-methods.
prediction(X.tr,y.tr,X.new,f,classifier,genesel,models=F,nbgene,tuneres,...)
X.tr |
Training gene expression data. Can be one of the following:
|
X.new |
gene expression data. Can be one of the following:
|
y.tr |
Class labels of training observation. Can be one of the following:
WARNING: The class labels will be re-coded for classifier construction to
range from |
f |
A two-sided formula, if |
genesel |
Optional (but usually recommended) object of class
|
nbgene |
Number of best genes to be kept for classification, based
on either
|
classifier |
Name of function ending with |
tuneres |
Analogous to the argument |
models |
a logical value indicating whether the model object shall be returned |
... |
Further arguments passed to the function |
This function builds the specified classifier and predicts the class labels of new observations. Hence, its usage differs from those of most other prediction functions in R.
A object of class predoutput-class; Predicted classes can be seen by show(predoutput)
Christoph Bernau bernau@ibe.med.uni-muenchen.de
Anne-Laure Boulesteix boulesteix@ibe.med.uni-muenchen.de
Slawski, M. Daumer, M. Boulesteix, A.-L. (2008) CMA - A comprehensive Bioconductor package for supervised classification with high dimensional data. BMC Bioinformatics 9: 439
GeneSelection, tune, evaluation,
compBoostCMA, dldaCMA, ElasticNetCMA,
fdaCMA, flexdaCMA, gbmCMA,
knnCMA, ldaCMA, LassoCMA,
nnetCMA, pknnCMA, plrCMA,
pls_ldaCMA, pls_lrCMA, pls_rfCMA,
pnnCMA, qdaCMA, rfCMA,
scdaCMA, shrinkldaCMA, svmCMAclassification
### a simple k-nearest neighbour example
### datasets
## Not run: plot(x)
data(golub)
golubY <- golub[,1]
golubX <- as.matrix(golub[,-1])
###Splitting data into training and test set
X.tr<-golubX[1:30]
X.new<-golubX[31:39]
y.tr<-golubY[1:30]
### 1. GeneSelection
selttest <- GeneSelection(X=X.tr, y=y.tr, method = "t.test")
### 2. tuning
tunek <- tune(X.tr, y.tr, genesel = selttest, nbgene = 20, classifier = knnCMA)
### 3. classification
pred <- prediction(X.tr=X.tr,y.tr=y.tr,X.new=X.new, genesel = selttest,
tuneres = tunek, nbgene = 20, classifier = knnCMA)
### show and analyze results:
show(pred)
## End(Not run)