| ggclust {MicrobiotaProcess} | R Documentation |
plot the result of hierarchical cluster analysis for the samples
ggclust(obj, ...) ## S3 method for class 'clustplotClass' ggclust( obj, layout = "rectangular", factorNames = NULL, factorLevels = NULL, pointsize = 2, fontsize = 2.6, hjust = -0.1, settheme = TRUE, ... )
obj |
R object, clustplotClass. |
..., |
additional params, see also |
layout |
character, the layout of tree, see also |
factorNames |
character, default is NULL. |
factorLevels |
list, default is NULL. |
pointsize |
numeric, the size of point, default is 2. |
fontsize |
numeric, the size of text of tiplabel, default is 2.6. |
hjust |
numeric, default is -0.1 |
settheme |
logical, default is TRUE. |
the figures of hierarchical cluster.
Shuangbin Xu
#don't run in examples
#library(phyloseq)
#library(ggtree)
#library(ggplot2)
#data(GlobalPatterns)
#subGlobal <- subset_samples(GlobalPatterns,
# SampleType %in% c("Feces", "Mock", "Ocean", "Skin"))
#hcsample <- get_clust(subGlobal, distmethod="jaccard",
# method="hellinger", hclustmethod="average")
#hc_p <- ggclust(hcsample, layout = "rectangular",
# pointsize=1, fontsize=0,
# factorNames=c("SampleType")) +
# theme_tree2(legend.position="right",
# plot.title = element_text(face="bold", lineheight=25,hjust=0.5))