| colTabulates {DelayedMatrixStats} | R Documentation |
Tabulates the values in a matrix by row (column).
colTabulates(x, rows = NULL, cols = NULL, values = NULL, ...) rowTabulates(x, rows = NULL, cols = NULL, values = NULL, ...) ## S4 method for signature 'DelayedMatrix' colTabulates( x, rows = NULL, cols = NULL, values = NULL, force_block_processing = FALSE, ... ) ## S4 method for signature 'DelayedMatrix' rowTabulates( x, rows = NULL, cols = NULL, values = NULL, force_block_processing = FALSE, ... )
x |
A NxK DelayedMatrix. |
rows |
A |
cols |
A |
values |
An |
... |
Additional arguments passed to specific methods. |
force_block_processing |
|
An alternative to these functions, is to use table(x, row(x))
and table(x, col(x)), with the exception that the latter do not
support the raw data type.
When there are no missing values in x, we have that
all(rowTabulates(x) == t(table(x, row(x)))) and
all(colTabulates(x) == t(table(x, col(x)))).
When there are missing values, we have that
all(rowTabulates(x) == t(table(x, row(x), useNA = "always")[, seq_len(nrow(x))])) and
all(colTabulates(x) == t(table(x, col(x), useNA = "always")[, seq_len(ncol(x))])).
Returns a NxJ (KxJ) matrix where N (K) is the
number of row (column) vectors tabulated and J is the
number of values counted.
Peter Hickey
# A DelayedMatrix with a 'DataFrame' seed
dm_DF <- DelayedArray(S4Vectors::DataFrame(C1 = rep(1L, 5),
C2 = as.integer((0:4) ^ 2),
C3 = seq(-5L, -1L, 1L)))
colTabulates(dm_DF)
rowTabulates(dm_DF)