| colMeans2 {DelayedMatrixStats} | R Documentation |
Calculates the mean for each row (column) in a matrix.
colMeans2(x, rows = NULL, cols = NULL, na.rm = FALSE, dim. = dim(x), ...) rowMeans2(x, rows = NULL, cols = NULL, na.rm = FALSE, dim. = dim(x), ...) ## S4 method for signature 'DelayedMatrix' colMeans2( x, rows = NULL, cols = NULL, na.rm = FALSE, dim. = dim(x), force_block_processing = FALSE, ... ) ## S4 method for signature 'Matrix' colMeans2(x, rows = NULL, cols = NULL, na.rm = FALSE, dim. = dim(x), ...) ## S4 method for signature 'SolidRleArraySeed' colMeans2(x, rows = NULL, cols = NULL, na.rm = FALSE, dim. = dim(x), ...) ## S4 method for signature 'DelayedMatrix' rowMeans2( x, rows = NULL, cols = NULL, na.rm = FALSE, dim. = dim(x), force_block_processing = FALSE, ... ) ## S4 method for signature 'Matrix' rowMeans2(x, rows = NULL, cols = NULL, na.rm = FALSE, dim. = dim(x), ...)
x |
A NxK DelayedMatrix. |
rows |
A |
cols |
A |
na.rm |
|
dim. |
An |
... |
Additional arguments passed to specific methods. |
force_block_processing |
|
The implementation of rowMeans2() and colMeans2() is
optimized for both speed and memory.
Returns a numeric vector of
length N (K).
Peter Hickey
# A DelayedMatrix with a 'matrix' seed
dm_matrix <- DelayedArray(matrix(c(rep(1L, 5),
as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L)),
ncol = 3))
# A DelayedMatrix with a 'SolidRleArraySeed' seed
dm_Rle <- RleArray(Rle(c(rep(1L, 5),
as.integer((0:4) ^ 2),
seq(-5L, -1L, 1L))),
dim = c(5, 3))
colMeans2(dm_matrix)
# NOTE: Temporarily use verbose output to demonstrate which method is
# which method is being used
options(DelayedMatrixStats.verbose = TRUE)
# By default, this uses a seed-aware method for a DelayedMatrix with a
# 'SolidRleArraySeed' seed
rowMeans2(dm_Rle)
# Alternatively, can use the block-processing strategy
rowMeans2(dm_Rle, force_block_processing = TRUE)
options(DelayedMatrixStats.verbose = FALSE)