| fdaCMA {CMA} | R Documentation |
Fisher's Linear Discriminant Analysis constructs a subspace of
'optimal projections' in which classification is performed.
The directions of optimal projections are computed by the
function cancor from the package stats. For
an exhaustive treatment, see e.g. Ripley (1996).
For S4 method information, see fdaCMA-methods.
fdaCMA(X, y, f, learnind, comp = 1, plot = FALSE,models=FALSE)
X |
Gene expression data. Can be one of the following:
|
y |
Class labels. Can be one of the following:
|
f |
A two-sided formula, if |
learnind |
An index vector specifying the observations that
belong to the learning set. May be |
comp |
Number of discriminant coordinates (projections) to compute.
Default is one, must be smaller than or equal to |
plot |
Should the projections onto the space spanned by the optimal
projection directions be plotted ? Default is |
models |
a logical value indicating whether the model object shall be returned |
An object of class cloutput.
Excessive variable selection has usually to performed before
fdaCMA can be applied in the p > n setting.
Not reducing the number of variables can result in an error
message.
Martin Slawski ms@cs.uni-sb.de
Anne-Laure Boulesteix boulesteix@ibe.med.uni-muenchen.de
Ripley, B.D. (1996)
Pattern Recognition and Neural Networks.
Cambridge University Press
compBoostCMA, dldaCMA, ElasticNetCMA,
fdaCMA, flexdaCMA, gbmCMA,
knnCMA, ldaCMA, LassoCMA,
nnetCMA, pknnCMA, plrCMA,
pls_ldaCMA, pls_lrCMA, pls_rfCMA,
pnnCMA, qdaCMA, rfCMA,
scdaCMA, shrinkldaCMA, svmCMA
### load Golub AML/ALL data data(golub) ### extract class labels golubY <- golub[,1] ### extract gene expression from first 10 genes golubX <- as.matrix(golub[,2:11]) ### select learningset ratio <- 2/3 set.seed(111) learnind <- sample(length(golubY), size=floor(ratio*length(golubY))) ### run FDA fdaresult <- fdaCMA(X=golubX, y=golubY, learnind=learnind, comp = 1, plot = TRUE) ### show results show(fdaresult) ftable(fdaresult) plot(fdaresult) ### multiclass example: ### load Khan data data(khan) ### extract class labels khanY <- khan[,1] ### extract gene expression from first 10 genes khanX <- as.matrix(khan[,2:11]) ### select learningset set.seed(111) learnind <- sample(length(khanY), size=floor(ratio*length(khanY))) ### run FDA fdaresult <- fdaCMA(X=khanX, y=khanY, learnind=learnind, comp = 2, plot = TRUE) ### show results show(fdaresult) ftable(fdaresult) plot(fdaresult)