BiocNeighbors 1.6.0
The BiocNeighbors package provides several algorithms for approximate neighbor searches:
These methods complement the exact algorithms described previously.
Again, it is straightforward to switch from one algorithm to another by simply changing the BNPARAM argument in findKNN and queryKNN.
We perform the k-nearest neighbors search with the Annoy algorithm by specifying BNPARAM=AnnoyParam().
nobs <- 10000
ndim <- 20
data <- matrix(runif(nobs*ndim), ncol=ndim)
fout <- findKNN(data, k=10, BNPARAM=AnnoyParam())
head(fout$index)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 3521 6940 7197 2671 590 6508 649 891 1436 2265
## [2,] 5076 1010 6926 3469 122 2042 6395 778 7022 1902
## [3,] 6755 1777 5789 9447 9730 1215 2609 793 7163 1266
## [4,] 1553 8994 8187 3844 1962 3457 109 8824 7417 939
## [5,] 2426 91 9785 9127 2655 5888 5433 3348 9616 8991
## [6,] 8786 6180 3485 3826 4068 8907 4252 3467 6429 7282
head(fout$distance)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 0.8939867 0.9363595 1.0008545 1.0161842 1.0631888 1.064085 1.077162
## [2,] 0.9608915 0.9682344 1.0185841 1.0358274 1.0508249 1.051615 1.089248
## [3,] 0.8045722 0.9334469 0.9345300 0.9352991 0.9947063 1.039884 1.044366
## [4,] 0.8362793 0.8582160 0.8825148 0.9497098 0.9522839 1.007295 1.007637
## [5,] 0.9503789 1.0751200 1.1055510 1.1151500 1.1241959 1.133050 1.135079
## [6,] 1.0123729 1.0160055 1.0189724 1.0288382 1.0357256 1.050178 1.080513
## [,8] [,9] [,10]
## [1,] 1.094295 1.102976 1.121646
## [2,] 1.094440 1.136807 1.139871
## [3,] 1.053339 1.083925 1.087731
## [4,] 1.007907 1.016277 1.019069
## [5,] 1.136122 1.137514 1.143163
## [6,] 1.101067 1.112083 1.123004
We can also identify the k-nearest neighbors in one dataset based on query points in another dataset.
nquery <- 1000
ndim <- 20
query <- matrix(runif(nquery*ndim), ncol=ndim)
qout <- queryKNN(data, query, k=5, BNPARAM=AnnoyParam())
head(qout$index)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 2527 1139 2203 9993 6640
## [2,] 3129 4395 6689 4217 6701
## [3,] 9677 385 10 3993 7034
## [4,] 7533 8356 1771 48 5844
## [5,] 1566 6995 2749 9165 3525
## [6,] 4126 7452 6597 6468 9665
head(qout$distance)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.8259433 0.9379281 0.9428999 0.9689491 0.9751185
## [2,] 0.8221393 0.9631063 1.1422907 1.1520110 1.1591171
## [3,] 0.8956584 0.9790214 1.0144969 1.0156194 1.0178609
## [4,] 0.8217030 1.0031134 1.0049297 1.0262222 1.0467658
## [5,] 0.9914263 1.0444784 1.0719147 1.0735639 1.0821632
## [6,] 0.9146192 1.0163833 1.0326532 1.0444288 1.0478787
It is similarly easy to use the HNSW algorithm by setting BNPARAM=HnswParam().
Most of the options described for the exact methods are also applicable here. For example:
subset to identify neighbors for a subset of points.get.distance to avoid retrieving distances when unnecessary.BPPARAM to parallelize the calculations across multiple workers.BNINDEX to build the forest once for a given data set and re-use it across calls.The use of a pre-built BNINDEX is illustrated below:
pre <- buildIndex(data, BNPARAM=AnnoyParam())
out1 <- findKNN(BNINDEX=pre, k=5)
out2 <- queryKNN(BNINDEX=pre, query=query, k=2)
Both Annoy and HNSW perform searches based on the Euclidean distance by default.
Searching by Manhattan distance is done by simply setting distance="Manhattan" in AnnoyParam() or HnswParam().
Users are referred to the documentation of each function for specific details on the available arguments.
Both Annoy and HNSW generate indexing structures - a forest of trees and series of graphs, respectively -
that are saved to file when calling buildIndex().
By default, this file is located in tempdir()1 On HPC file systems, you can change TEMPDIR to a location that is more amenable to concurrent access. and will be removed when the session finishes.
AnnoyIndex_path(pre)
## [1] "C:\\Users\\biocbuild\\bbs-3.11-bioc\\tmpdir\\Rtmp6hDGS5\\file2e806c4a418a.idx"
If the index is to persist across sessions, the path of the index file can be directly specified in buildIndex.
This can be used to construct an index object directly using the relevant constructors, e.g., AnnoyIndex(), HnswIndex().
However, it becomes the responsibility of the user to clean up any temporary indexing files after calculations are complete.
sessionInfo()
## R version 4.0.0 (2020-04-24)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows Server 2012 R2 x64 (build 9600)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=C
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] BiocNeighbors_1.6.0 knitr_1.28 BiocStyle_2.16.0
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.4.6 bookdown_0.18 lattice_0.20-41
## [4] digest_0.6.25 grid_4.0.0 stats4_4.0.0
## [7] magrittr_1.5 evaluate_0.14 rlang_0.4.5
## [10] stringi_1.4.6 S4Vectors_0.26.0 Matrix_1.2-18
## [13] rmarkdown_2.1 BiocParallel_1.22.0 tools_4.0.0
## [16] stringr_1.4.0 parallel_4.0.0 xfun_0.13
## [19] yaml_2.2.1 compiler_4.0.0 BiocGenerics_0.34.0
## [22] BiocManager_1.30.10 htmltools_0.4.0