| utils-motif {universalmotif} | R Documentation |
Motif-related utility functions.
add_gap(motif, gaploc, mingap, maxgap) compare_columns(x, y, method, bkg1 = rep(1/length(x), length(x)), bkg2 = rep(1/length(y), length(y)), nsites1 = 100, nsites2 = 100) consensus_to_ppm(letter) consensus_to_ppmAA(letter) get_consensus(position, alphabet = "DNA", type = "PPM", pseudocount = 1) get_consensusAA(position, type = "PPM", pseudocount = 0) get_matches(motif, score) get_scores(motif) icm_to_ppm(position) motif_score(motif, threshold = c(0, 1), use.freq = 1) pcm_to_ppm(position, pseudocount = 0) position_icscore(position, bkg = numeric(), type = "PPM", pseudocount = 1, nsites = 100, relative_entropy = FALSE, schneider_correction = FALSE) ppm_to_icm(position, bkg = numeric(), schneider_correction = FALSE, nsites = 100, relative_entropy = FALSE) ppm_to_pcm(position, nsites = 100) ppm_to_pwm(position, bkg = numeric(), pseudocount = 1, nsites = 100, smooth = TRUE) pwm_to_ppm(position, bkg = numeric()) score_match(motif, match) summarise_motifs(motifs, na.rm = TRUE) ungap(motif, delete = FALSE)
motif |
Motif object to calculate scores from, or add/remove gap. |
gaploc |
|
mingap |
|
maxgap |
|
x |
|
y |
|
method |
|
bkg1 |
|
bkg2 |
|
nsites1 |
|
nsites2 |
|
letter |
|
position |
|
alphabet |
|
type |
|
pseudocount |
|
score |
|
threshold |
|
use.freq |
|
bkg |
|
nsites |
|
relative_entropy |
|
schneider_correction |
|
smooth |
|
match |
|
motifs |
|
na.rm |
|
delete |
|
For consensus_to_ppm() and consensus_to_ppmAA(): a numeric
vector of length 4 and 20, respectively.
For get_consensus() and get_consensusAA(): a character vector
of length 1.
For get_matches(): a character vector of motif matches.
For motif_score(): a named numeric vector of motif scores.
For position_icscore(): a numeric vector of length 1.
For ppm_to_icm(), icm_to_ppm(), pcm_to_ppm(),
ppm_to_pcm(), ppm_to_pwm(), and pwm_to_ppm(): a numeric
vector with length equal to input numeric vector.
For score_match(): a numeric vector with the match motif score.
For summarise_motifs(): a data.frame with columns representing
the universalmotif slots.
Benjamin Jean-Marie Tremblay, b2tremblay@uwaterloo.ca
data(examplemotif)
#######################################################################
## add_gap
## Add gap information to a motif.
m <- create_motif()
# Add a gap size 5-8 between positions 4 and 5:
m <- add_gap(m, gaploc = 4, mingap = 5, maxgap = 8)
#######################################################################
## compare_columns
## Compare two numeric vectors using the metrics from compare_motifs()
compare_columns(c(0.5, 0.1, 0.1, 0.2), c(0.7, 0.1, 0.1, 0.1), "PCC")
#######################################################################
## consensus_to_ppm
## Do the opposite of get_consensus. Note that loss of information is
## inevitable. Generates a sequence matrix.
sapply(c("A", "G", "T", "B"), consensus_to_ppm)
#######################################################################
## consensus_to_ppmAA
## Do the opposite of get_consensusAA and generate a motif matrix.
sapply(c("V", "A", "L"), consensus_to_ppmAA)
#######################################################################
## get_consensus
## Get a consensus string from a DNA/RNA motif.
m <- create_motif()["motif"]
apply(m, 2, get_consensus)
#######################################################################
## get_consensusAA
## Get a consensus string from an amino acid motif. Unless each position
## is clearly dominated by a single amino acid, the resulting string will
## likely be useless.
m <- create_motif(alphabet = "AA")["motif"]
apply(m, 2, get_consensusAA, type = "PPM")
#######################################################################
## get_match
## Get all possible motif matches above input score
get_matches(examplemotif, 10)
#######################################################################
## get_scores
## Get all possible scores for a motif
length(get_scores(examplemotif))
#######################################################################
## icm_to_ppm
## Do the opposite of ppm_to_icm.
m <- create_motif(type = "ICM")["motif"]
apply(m, 2, icm_to_ppm)
#######################################################################
## motif_score
## Calculate motif score from different thresholds
m <- normalize(examplemotif)
motif_score(m, c(0, 0.8, 1))
#######################################################################
## pcm_to_ppm
## Go from a count type motif to a probability type motif.
m <- create_motif(type = "PCM", nsites = 50)["motif"]
apply(m, 2, pcm_to_ppm, pseudocount = 1)
#######################################################################
## position_icscore
## Similar to ppm_to_icm, except this calculates the position sum.
m <- create_motif()["motif"]
apply(m, 2, position_icscore, type = "PPM", bkg = rep(0.25, 4))
#######################################################################
## ppm_to_icm
## Convert one column from a probability type motif to an information
## content type motif.
m <- create_motif(nsites = 100, pseudocount = 0.8)["motif"]
apply(m, 2, ppm_to_icm, nsites = 100, bkg = rep(0.25, 4))
#######################################################################
## ppm_to_pcm
## Do the opposite of pcm_to_ppm.
m <- create_motif()["motif"]
apply(m, 2, ppm_to_pcm, nsites = 50)
#######################################################################
## ppm_to_pwm
## Go from a probability type motif to a weight type motif.
m <- create_motif()["motif"]
apply(m, 2, ppm_to_pwm, nsites = 100, bkg = rep(0.25, 4))
#######################################################################
## pwm_to_ppm
## Do the opposite of ppm_to_pwm.
m <- create_motif(type = "PWM")["motif"]
apply(m, 2, pwm_to_ppm, bkg = rep(0.25, 4))
#######################################################################
## Note that not all type conversions can be done directly; for those
## type conversions which are unavailable, universalmotif just chains
## together others (i.e. from PCM -> ICM => pcm_to_ppm -> ppm_to_icm)
#######################################################################
## score_match
## Calculate score of a particular match
score_match(examplemotif, "TATATAT")
score_match(examplemotif, "TATATAG")
#######################################################################
## summarise_motifs
## Create a data.frame of information based on a list of motifs.
m1 <- create_motif()
m2 <- create_motif()
m3 <- create_motif()
summarise_motifs(list(m1, m2, m3))
#######################################################################
## ungap
## Unset motif's gap status. Does not delete actual gap data unless
## delete = TRUE.
m <- create_motif()
m <- add_gap(m, 3, 2, 4)
m <- ungap(m)
# Restore gap data:
m <- add_gap(m)