| modelTurnover {pulsedSilac} | R Documentation |
Method to apply turnover models on protein/peptide data
modelTurnover(x, ...)
## S4 method for signature 'SilacProteinExperiment'
modelTurnover(
x,
assayName = "fraction",
formula = "fraction ~ 1-exp(-k*t)",
start = list(k = 0.02),
robust = FALSE,
mode = "protein",
verbose = FALSE,
returnModel = FALSE,
conditionCol,
timeCol,
...
)
## S4 method for signature 'SilacPeptideExperiment'
modelTurnover(
x,
assayName = "fraction",
formula = "fraction ~ 1-exp(-k*t)",
start = list(k = 0.02),
robust = FALSE,
mode = c("grouped", "peptide"),
verbose = FALSE,
returnModel = FALSE,
conditionCol,
timeCol,
proteinCol,
...
)
## S4 method for signature 'SilacProteomicsExperiment'
modelTurnover(
x,
assayName = "fraction",
formula = "fraction ~ 1-exp(-k*t)",
start = list(k = 0.02),
robust = FALSE,
mode = c("protein", "grouped", "peptide"),
verbose = FALSE,
returnModel = FALSE,
conditionCol,
timeCol,
proteinCol,
...
)
x |
A |
... |
further parameters passed into |
assayName |
|
formula |
|
start |
named |
robust |
|
mode |
|
verbose |
|
returnModel |
|
conditionCol |
|
timeCol |
|
proteinCol |
|
A named list with either model metrics in matrices or the
model objects.
data('wormsPE')
wormsPE <- calculateIsotopeFraction(wormsPE, ratioAssay = 'ratio')
modelList <- modelTurnover(x = wormsPE[1:10],
assayName = 'fraction',
formula = 'fraction ~ 1 - exp(-k*t)',
start = list(k = 0.02),
mode = 'protein',
robust = FALSE,
returnModel = TRUE)