| summary {MIGSA} | R Documentation |
R base summary overwritten functions to manipulate MIGSA objects.
## S3 method for class 'SEAparams' summary(object, ...) ## S3 method for class 'GSEAparams' summary(object, ...) ## S3 method for class 'IGSAinput' summary(object, ...) ## S3 method for class 'MIGSAres' summary(object, ...)
object |
SEAparams, GSEAparams, IGSAinput or MIGSAres object. |
... |
not in use. |
A summary of the object.
## Lets get the summary of the default SEAparams object
seaParams <- SEAparams();
summary(seaParams);
## Lets get the summary of the default GSEAparams object
gseaParams <- GSEAparams();
summary(gseaParams);
## Lets create a basic valid IGSAinput object to get its summary.
## First create a expression matrix.
maData <- matrix(rnorm(10000),ncol=4);
rownames(maData) <- 1:nrow(maData); # It must have rownames (gene names).
maExprData <- new("MAList",list(M=maData));
## Now lets create the FitOptions object.
myFOpts <- FitOptions(c("Cond1", "Cond1", "Cond2", "Cond2"));
## And now we can create our IGSAinput ready for MIGSA.
igsaInput <- IGSAinput(name="myIgsaInput", expr_data=maExprData,
fit_options=myFOpts);
summary(igsaInput);
## Now lets get the summary of out migsaRes data object.
data(migsaRes);
### As enrichment cutoff is not set then we will get for each experiment the
### number of enriched gene sets at different cutoff values.
summary(migsaRes);
### Lets set the enrichment cutoff at 0.01
migsaResWCoff <- setEnrCutoff(migsaRes, 0.01);
### Now as summary we will get the number of enriched gene sets per
### experiment and their intersections.
summary(migsaResWCoff);