| hlaParallelAttrBagging {HIBAG} | R Documentation |
To build a HIBAG model for predicting HLA types via parallel computation.
hlaParallelAttrBagging(cl, hla, snp, auto.save="",
nclassifier=100L, mtry=c("sqrt", "all", "one"), prune=TRUE, na.rm=TRUE,
mono.rm=TRUE, stop.cluster=FALSE, verbose=TRUE)
cl |
if a cluster object, created by the package
parallel-package; if |
hla |
training HLA types, an object of |
snp |
training SNP genotypes, an object of
|
auto.save |
specify a autosaved file, see details |
nclassifier |
the total number of individual classifiers |
mtry |
a character or a numeric value, the number of variables randomly sampled as candidates for each selection. See details |
prune |
if TRUE, to perform a parsimonious forward variable selection, otherwise, exhaustive forward variable selection. See details |
na.rm |
if TRUE, remove the samples with missing HLA types |
mono.rm |
if TRUE, remove monomorphic SNPs |
stop.cluster |
|
verbose |
if TRUE, show information |
mtry (the number of variables randomly sampled as candidates for
each selection):
"sqrt", using the square root of the total number of candidate SNPs;
"all", using all candidate SNPs;
"one", using one SNP;
an integer, specifying the number of candidate SNPs;
0 < r < 1, the number of candidate SNPs is
"r * the total number of SNPs".
prune: there is no significant difference on accuracy between
parsimonious and exhaustive forward variable selections. If prune = TRUE,
the searching algorithm performs a parsimonious forward variable selection:
if a new SNP predictor reduces the current out-of-bag accuracy, then it is
removed from the candidate SNP set for future searching. Parsimonious selection
helps to improve the computational efficiency by reducing the searching times
of non-informative SNP markers.
Return an object of hlaAttrBagClass if auto.save="".
Xiuwen Zheng
Zheng X, Shen J, Cox C, Wakefield J, Ehm M, Nelson M, Weir BS; HIBAG – HLA Genotype Imputation with Attribute Bagging. Pharmacogenomics Journal. doi: 10.1038/tpj.2013.18. http://www.nature.com/tpj/journal/v14/n2/full/tpj201318a.html
# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")
# divide HLA types randomly
set.seed(100)
hlatab <- hlaSplitAllele(hla, train.prop=0.5)
names(hlatab)
# "training" "validation"
summary(hlatab$training)
summary(hlatab$validation)
# SNP predictors within the flanking region on each side
region <- 500 # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
hla.id, region*1000, assembly="hg19")
length(snpid) # 275
# training and validation genotypes
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
snp.sel = match(snpid, HapMap_CEU_Geno$snp.id),
samp.sel = match(hlatab$training$value$sample.id,
HapMap_CEU_Geno$sample.id))
test.geno <- hlaGenoSubset(HapMap_CEU_Geno,
samp.sel=match(hlatab$validation$value$sample.id,
HapMap_CEU_Geno$sample.id))
#############################################################################
set.seed(100)
# train a HIBAG model in parallel with 2 cores
# please use "nclassifier=100" when you use HIBAG for real data
model <- hlaParallelAttrBagging(2, hlatab$training, train.geno, nclassifier=4)
#############################################################################
library(parallel)
# use option cl.core to choose an appropriate cluster size.
cl <- makeCluster(getOption("cl.cores", 2))
set.seed(100)
# train a HIBAG model in parallel
# please use "nclassifier=100" when you use HIBAG for real data
hlaParallelAttrBagging(cl, hlatab$training, train.geno, nclassifier=4,
auto.save="tmp_model.RData", stop.cluster=TRUE)
mobj <- get(load("tmp_model.RData"))
summary(mobj)
model <- hlaModelFromObj(mobj)
# validation
pred <- predict(model, test.geno)
summary(pred)
# compare
hlaCompareAllele(hlatab$validation, pred, allele.limit=model)$overall
# since 'stop.cluster=TRUE' used in 'hlaParallelAttrBagging'
# need a new cluster
cl <- makeCluster(getOption("cl.cores", 2))
pred <- predict(model, test.geno, cl=cl)
summary(pred)
# stop parallel nodes
stopCluster(cl)
# delete the temporary file
unlink(c("tmp_model.RData"), force=TRUE)