| plotDiffHeatmap {CATALYST} | R Documentation |
Heatmaps summarizing differental abundance & differential state testing results.
plotDiffHeatmap( x, y, top_n = 20, all = FALSE, order = TRUE, th = 0.1, hm1 = TRUE, normalize = TRUE, row_anno = TRUE, col_anno = TRUE )
x |
|
y |
a |
top_n |
numeric. Number of top clusters (if |
all |
logical. Specifies whether all clusters or cluster-marker combinations
should be displayed. If |
order |
logical. Should results be ordered by significance? |
th |
numeric. Threshold on adjusted p-values below which clusters (DA) or cluster-marker combinations (DS) should be considered significant. |
hm1 |
logical. Specifies whether the left-hand side heatmap should be plotted. |
normalize |
logical. Specifies whether Z-score normalized values should be plotted
in the right-hand side heatmap. If |
row_anno |
logical. Should a row annotation indicating whether cluster (DA) or cluster-marker combinations (DS) are significant, as well as adjusted p-values be included? |
col_anno |
logical. Should column annotations for each factor
in |
For DA tests, plotDiffHeatmap will display
median (arcsinh-transformed) cell-type marker expressions (across all samples)
cluster abundances by samples
row annotations indicating if detected clusteres
are significant (i.e. adj. p-value >= th)
For DS tests, plotDiffHeatmap will display
median (arcsinh-transformed) cell-type marker expressions (across all samples)
median (arcsinh-transformed) cell-state marker expressions by sample
row annotations indicating if detected cluster-marker combinations
are significant (i.e. adj. p-value >= th)
a HeatmapList-class object.
Lukas M Weber and Helena Lucia Crowell helena.crowell@uzh.ch
# construct SCE & run clustering
data(PBMC_fs, PBMC_panel, PBMC_md)
sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md)
sce <- cluster(sce)
## differential analysis
library(diffcyt)
# create design & constrast matrix
design <- createDesignMatrix(PBMC_md, cols_design=3:4)
contrast <- createContrast(c(0, 1, 0, 0, 0))
# test for
# - differential abundance (DA) of clusters
# - differential states (DS) within clusters
da <- diffcyt(sce, design = design, contrast = contrast,
analysis_type = "DA", method_DA = "diffcyt-DA-edgeR",
clustering_to_use = "meta20")
ds <- diffcyt(sce, design = design, contrast = contrast,
analysis_type = "DS", method_DS = "diffcyt-DS-limma",
clustering_to_use = "meta20")
# display test results for
# - top DA clusters
# - top DS cluster-marker combintations
plotDiffHeatmap(sce, da)
plotDiffHeatmap(sce, ds)