| n_cells {CATALYST} | R Documentation |
daFrameMethods for accessing slots in a daFrame.
n_cells(x) marker_classes(x) type_markers(x) state_markers(x) sample_ids(x) cluster_codes(x) cluster_ids(x) ## S4 method for signature 'daFrame' exprs(object) ## S4 method for signature 'daFrame' n_cells(x) ## S4 method for signature 'daFrame' marker_classes(x) ## S4 method for signature 'daFrame' type_markers(x) ## S4 method for signature 'daFrame' state_markers(x) ## S4 method for signature 'daFrame' sample_ids(x) ## S4 method for signature 'daFrame' cluster_codes(x) ## S4 method for signature 'daFrame' cluster_ids(x)
x, object |
a |
exprsextracts the arcsinh-transformed expressions.
n_cellsextracts the number of events measured per sample.
type_markersextracts the antigens used for clustering.
state_markersextracts antigens that were not used for clustering.
sample_idsextracts the sample IDs as specified in the metadata-table.
cluster_codesextracts a data.frame containing cluster codes for the
FlowSOM clustering, the ConsensusClusterPlus
metaclustering, and all mergings done through mergeClusters.
cluster_idsextracts the numeric vector of cluster IDs
as inferred by FlowSOM.
Helena Lucia Crowell crowellh@student.ethz.ch
# construct daFrame
data(PBMC_fs, PBMC_panel, PBMC_md)
re <- daFrame(PBMC_fs, PBMC_panel, PBMC_md)
# run clustering
lineage <- c("CD3", "CD45", "CD4", "CD20", "CD33",
"CD123", "CD14", "IgM", "HLA_DR", "CD7")
re <- cluster(re, cols_to_use=lineage)
# view data summary
library(SummarizedExperiment)
cbind(metadata(re)$experiment_info, cells=n_cells(re))
# access row / cell data
head(rowData(re))
plot(table(cluster_ids(re)))
# access marker information
type_markers(re)
state_markers(re)
# get cluster ID correspondece between 2 clusterings
old_ids <- seq_len(20)
m <- match(old_ids, cluster_codes(re)$`20`)
new_ids <- cluster_codes(re)$`12`[m]
data.frame(old_ids, new_ids)
# plot relative change in area under CDF curve vs. k
metadata(re)$delta_area