BiocNeighbors 1.14.0
The BiocNeighbors package provides several algorithms for approximate neighbor searches:
These methods complement the exact algorithms described previously.
Again, it is straightforward to switch from one algorithm to another by simply changing the BNPARAM argument in findKNN and queryKNN.
We perform the k-nearest neighbors search with the Annoy algorithm by specifying BNPARAM=AnnoyParam().
nobs <- 10000
ndim <- 20
data <- matrix(runif(nobs*ndim), ncol=ndim)
fout <- findKNN(data, k=10, BNPARAM=AnnoyParam())
head(fout$index)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 4042 7856 4238 8299 1766 5796 5621 6000 9152 6617
## [2,] 2651 604 6064 5111 4753 7231 6854 8954 1729 1971
## [3,] 9193 1346 5334 6023 6992 331 6063 61 37 6677
## [4,] 4759 6542 4552 7614 1768 8657 960 4970 9903 1503
## [5,] 5590 5862 7763 1951 3114 2410 6985 7746 3644 444
## [6,] 1504 4662 9109 5744 188 357 1513 3972 4232 9816
head(fout$distance)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 0.8239768 0.8296127 0.8839809 0.8971590 0.8987589 0.8999861 0.9078665
## [2,] 0.6472155 0.9567929 0.9744633 0.9749049 0.9864627 0.9981125 1.0008955
## [3,] 0.9584417 1.0204414 1.0658659 1.0752560 1.0907028 1.0965564 1.0992800
## [4,] 0.8943398 0.9228672 0.9440770 0.9861521 0.9943904 1.0246195 1.0302318
## [5,] 0.9527171 0.9658626 0.9683394 1.0050453 1.0252653 1.0646908 1.0674213
## [6,] 1.0222392 1.1300329 1.1315137 1.1404370 1.1887219 1.1944500 1.1952969
## [,8] [,9] [,10]
## [1,] 0.9312438 0.9337491 0.9372119
## [2,] 1.0061921 1.0160054 1.0245962
## [3,] 1.1149708 1.1175532 1.1233436
## [4,] 1.0326362 1.0623778 1.0674558
## [5,] 1.0696968 1.0736390 1.0765567
## [6,] 1.1991218 1.2015804 1.2017171
We can also identify the k-nearest neighbors in one dataset based on query points in another dataset.
nquery <- 1000
ndim <- 20
query <- matrix(runif(nquery*ndim), ncol=ndim)
qout <- queryKNN(data, query, k=5, BNPARAM=AnnoyParam())
head(qout$index)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 9175 6051 5461 6733 5945
## [2,] 1786 3211 2969 3911 8359
## [3,] 8263 138 4407 7105 681
## [4,] 2623 655 4523 8536 2800
## [5,] 6097 4074 6542 4103 3086
## [6,] 8852 882 3304 2622 6612
head(qout$distance)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.9157733 0.9319692 0.9942271 1.019294 1.053326
## [2,] 0.9436610 1.0530164 1.0871286 1.090240 1.091675
## [3,] 0.9417372 1.0759110 1.0840186 1.111516 1.143231
## [4,] 1.0033902 1.0060449 1.0133778 1.015667 1.024746
## [5,] 0.8307928 0.9824422 0.9932968 1.119641 1.130494
## [6,] 0.9663057 1.0589536 1.1283503 1.130326 1.143419
It is similarly easy to use the HNSW algorithm by setting BNPARAM=HnswParam().
Most of the options described for the exact methods are also applicable here. For example:
subset to identify neighbors for a subset of points.get.distance to avoid retrieving distances when unnecessary.BPPARAM to parallelize the calculations across multiple workers.BNINDEX to build the forest once for a given data set and re-use it across calls.The use of a pre-built BNINDEX is illustrated below:
pre <- buildIndex(data, BNPARAM=AnnoyParam())
out1 <- findKNN(BNINDEX=pre, k=5)
out2 <- queryKNN(BNINDEX=pre, query=query, k=2)
Both Annoy and HNSW perform searches based on the Euclidean distance by default.
Searching by Manhattan distance is done by simply setting distance="Manhattan" in AnnoyParam() or HnswParam().
Users are referred to the documentation of each function for specific details on the available arguments.
Both Annoy and HNSW generate indexing structures - a forest of trees and series of graphs, respectively -
that are saved to file when calling buildIndex().
By default, this file is located in tempdir()1 On HPC file systems, you can change TEMPDIR to a location that is more amenable to concurrent access. and will be removed when the session finishes.
AnnoyIndex_path(pre)
## [1] "F:\\biocbuild\\bbs-3.15-bioc\\tmpdir\\RtmpED9viq\\file3b705af469e.idx"
If the index is to persist across sessions, the path of the index file can be directly specified in buildIndex.
This can be used to construct an index object directly using the relevant constructors, e.g., AnnoyIndex(), HnswIndex().
However, it becomes the responsibility of the user to clean up any temporary indexing files after calculations are complete.
sessionInfo()
## R version 4.2.0 RC (2022-04-19 r82224 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows Server x64 (build 20348)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=C
## [2] LC_CTYPE=English_United States.utf8
## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.utf8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] BiocNeighbors_1.14.0 knitr_1.38 BiocStyle_2.24.0
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.8.3 magrittr_2.0.3 BiocGenerics_0.42.0
## [4] BiocParallel_1.30.0 lattice_0.20-45 R6_2.5.1
## [7] rlang_1.0.2 fastmap_1.1.0 stringr_1.4.0
## [10] tools_4.2.0 parallel_4.2.0 grid_4.2.0
## [13] xfun_0.30 cli_3.3.0 jquerylib_0.1.4
## [16] htmltools_0.5.2 yaml_2.3.5 digest_0.6.29
## [19] bookdown_0.26 Matrix_1.4-1 BiocManager_1.30.17
## [22] S4Vectors_0.34.0 sass_0.4.1 evaluate_0.15
## [25] rmarkdown_2.14 stringi_1.7.6 compiler_4.2.0
## [28] bslib_0.3.1 stats4_4.2.0 jsonlite_1.8.0