| pairwise_termsim {enrichplot} | R Documentation |
Get the similarity matrix
pairwise_termsim(x, method = "JC", semData = NULL, showCategory = 30) ## S4 method for signature 'enrichResult' pairwise_termsim(x, method = "JC", semData = NULL, showCategory = 200) ## S4 method for signature 'gseaResult' pairwise_termsim(x, method = "JC", semData = NULL, showCategory = 200) ## S4 method for signature 'compareClusterResult' pairwise_termsim(x, method = "JC", semData = NULL, showCategory = 200) pairwise_termsim.enrichResult( x, method = "JC", semData = NULL, showCategory = 200 ) pairwise_termsim.compareClusterResult( x, method = "JC", semData = NULL, showCategory = 200 )
x |
enrichment result. |
method |
method of calculating the similarity between nodes, one of "Resnik", "Lin", "Rel", "Jiang" , "Wang" and "JC"(Jaccard similarity coefficient) methods. |
semData |
GOSemSimDATA object |
showCategory |
number of enriched terms to display |
This function add similarity matrix to the termsim slot of enrichment result.
## Not run:
library(clusterProfiler)
library(org.Hs.eg.db)
library(enrichplot)
library(GOSemSim)
library(DOSE)
data(geneList)
gene <- names(geneList)[abs(geneList) > 2]
ego <- enrichGO(gene = gene,
universe = names(geneList),
OrgDb = org.Hs.eg.db,
ont = "BP",
pAdjustMethod = "BH",
pvalueCutoff = 0.01,
qvalueCutoff = 0.05,
readable = TRUE)
d <- godata('org.Hs.eg.db', ont="BP")
ego2 <- pairwise_termsim(ego, method="Wang", semData = d)
emapplot(ego2)
emapplot_cluster(ego2)
## End(Not run)