| fit_to_signatures {MutationalPatterns} | R Documentation |
Find the linear combination of mutation signatures that most closely reconstructs the mutation matrix by solving the nonnegative least-squares constraints problem.
fit_to_signatures(mut_matrix, signatures)
mut_matrix |
96 mutation count matrix (dimensions: 96 mutations X n samples) |
signatures |
Signature matrix (dimensions: 96 mutations X n signatures) |
Named list with signature contributions and reconstructed mutation matrix
## See the 'mut_matrix()' example for how we obtained the mutation matrix:
mut_mat <- readRDS(system.file("states/mut_mat_data.rds",
package="MutationalPatterns"))
## You can download the signatures from the COSMIC website:
# http://cancer.sanger.ac.uk/cancergenome/assets/signatures_probabilities.txt
## We copied the file into our package for your convenience.
filename <- system.file("extdata/signatures_probabilities.txt",
package="MutationalPatterns")
cancer_signatures <- read.table(filename, sep = "\t", header = TRUE)
## Match the order to MutationalPatterns standard of mutation matrix
order = match(row.names(mut_mat), cancer_signatures$Somatic.Mutation.Type)
## Reorder cancer signatures dataframe
cancer_signatures = cancer_signatures[order,]
## Use trinucletiode changes names as row.names
## row.names(cancer_signatures) = cancer_signatures$Somatic.Mutation.Type
## Keep only 96 contributions of the signatures in matrix
cancer_signatures = as.matrix(cancer_signatures[,4:33])
## Rename signatures to number only
colnames(cancer_signatures) = as.character(1:30)
## Perform the fitting
fit_res <- fit_to_signatures(mut_mat, cancer_signatures)