MinMaxScaler¶
- 
class pyspark.ml.feature.MinMaxScaler(*, min: float = 0.0, max: float = 1.0, inputCol: Optional[str] = None, outputCol: Optional[str] = None)[source]¶
- Rescale each feature individually to a common range [min, max] linearly using column summary statistics, which is also known as min-max normalization or Rescaling. The rescaled value for feature E is calculated as, - Rescaled(e_i) = (e_i - E_min) / (E_max - E_min) * (max - min) + min - For the case E_max == E_min, Rescaled(e_i) = 0.5 * (max + min) - New in version 1.6.0. - Notes - Since zero values will probably be transformed to non-zero values, output of the transformer will be DenseVector even for sparse input. - Examples - >>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([(Vectors.dense([0.0]),), (Vectors.dense([2.0]),)], ["a"]) >>> mmScaler = MinMaxScaler(outputCol="scaled") >>> mmScaler.setInputCol("a") MinMaxScaler... >>> model = mmScaler.fit(df) >>> model.setOutputCol("scaledOutput") MinMaxScalerModel... >>> model.originalMin DenseVector([0.0]) >>> model.originalMax DenseVector([2.0]) >>> model.transform(df).show() +-----+------------+ | a|scaledOutput| +-----+------------+ |[0.0]| [0.0]| |[2.0]| [1.0]| +-----+------------+ ... >>> minMaxScalerPath = temp_path + "/min-max-scaler" >>> mmScaler.save(minMaxScalerPath) >>> loadedMMScaler = MinMaxScaler.load(minMaxScalerPath) >>> loadedMMScaler.getMin() == mmScaler.getMin() True >>> loadedMMScaler.getMax() == mmScaler.getMax() True >>> modelPath = temp_path + "/min-max-scaler-model" >>> model.save(modelPath) >>> loadedModel = MinMaxScalerModel.load(modelPath) >>> loadedModel.originalMin == model.originalMin True >>> loadedModel.originalMax == model.originalMax True >>> loadedModel.transform(df).take(1) == model.transform(df).take(1) True - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with the same uid and some extra params. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - fit(dataset[, params])- Fits a model to the input dataset with optional parameters. - fitMultiple(dataset, paramMaps)- Fits a model to the input dataset for each param map in paramMaps. - Gets the value of inputCol or its default value. - getMax()- Gets the value of max or its default value. - getMin()- Gets the value of min or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - Gets the value of outputCol or its default value. - getParam(paramName)- Gets a param by its name. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Reads an ML instance from the input path, a shortcut of read().load(path). - read()- Returns an MLReader instance for this class. - save(path)- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. - set(param, value)- Sets a parameter in the embedded param map. - setInputCol(value)- Sets the value of - inputCol.- setMax(value)- Sets the value of - max.- setMin(value)- Sets the value of - min.- setOutputCol(value)- Sets the value of - outputCol.- setParams(self, \*[, min, max, inputCol, …])- Sets params for this MinMaxScaler. - write()- Returns an MLWriter instance for this ML instance. - Attributes - Returns all params ordered by name. - Methods Documentation - 
clear(param: pyspark.ml.param.Param) → None¶
- Clears a param from the param map if it has been explicitly set. 
 - 
copy(extra: Optional[ParamMap] = None) → JP¶
- Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied. - Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- JavaParams
- Copy of this instance 
 
 
 - 
explainParam(param: Union[str, pyspark.ml.param.Param]) → str¶
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - 
explainParams() → str¶
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - 
extractParamMap(extra: Optional[ParamMap] = None) → ParamMap¶
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - 
fit(dataset: pyspark.sql.dataframe.DataFrame, params: Union[ParamMap, List[ParamMap], Tuple[ParamMap], None] = None) → Union[M, List[M]]¶
- Fits a model to the input dataset with optional parameters. - New in version 1.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramsdict or list or tuple, optional
- an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models. 
 
- dataset
- Returns
- Transformeror a list of- Transformer
- fitted model(s) 
 
 
 - 
fitMultiple(dataset: pyspark.sql.dataframe.DataFrame, paramMaps: Sequence[ParamMap]) → Iterator[Tuple[int, M]]¶
- Fits a model to the input dataset for each param map in paramMaps. - New in version 2.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramMapscollections.abc.Sequence
- A Sequence of param maps. 
 
- dataset
- Returns
- _FitMultipleIterator
- A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential. 
 
 
 - 
getInputCol() → str¶
- Gets the value of inputCol or its default value. 
 - 
getMax() → float¶
- Gets the value of max or its default value. - New in version 1.6.0. 
 - 
getMin() → float¶
- Gets the value of min or its default value. - New in version 1.6.0. 
 - 
getOrDefault(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]¶
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - 
getOutputCol() → str¶
- Gets the value of outputCol or its default value. 
 - 
getParam(paramName: str) → pyspark.ml.param.Param¶
- Gets a param by its name. 
 - 
hasDefault(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param has a default value. 
 - 
hasParam(paramName: str) → bool¶
- Tests whether this instance contains a param with a given (string) name. 
 - 
isDefined(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user or has a default value. 
 - 
isSet(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user. 
 - 
classmethod load(path: str) → RL¶
- Reads an ML instance from the input path, a shortcut of read().load(path). 
 - 
classmethod read() → pyspark.ml.util.JavaMLReader[RL]¶
- Returns an MLReader instance for this class. 
 - 
save(path: str) → None¶
- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. 
 - 
set(param: pyspark.ml.param.Param, value: Any) → None¶
- Sets a parameter in the embedded param map. 
 - 
setInputCol(value: str) → pyspark.ml.feature.MinMaxScaler[source]¶
- Sets the value of - inputCol.
 - 
setMax(value: float) → pyspark.ml.feature.MinMaxScaler[source]¶
- Sets the value of - max.- New in version 1.6.0. 
 - 
setMin(value: float) → pyspark.ml.feature.MinMaxScaler[source]¶
- Sets the value of - min.- New in version 1.6.0. 
 - 
setOutputCol(value: str) → pyspark.ml.feature.MinMaxScaler[source]¶
- Sets the value of - outputCol.
 - 
setParams(self, \*, min=0.0, max=1.0, inputCol=None, outputCol=None)[source]¶
- Sets params for this MinMaxScaler. - New in version 1.6.0. 
 - 
write() → pyspark.ml.util.JavaMLWriter¶
- Returns an MLWriter instance for this ML instance. 
 - Attributes Documentation - 
inputCol= Param(parent='undefined', name='inputCol', doc='input column name.')¶
 - 
max= Param(parent='undefined', name='max', doc='Upper bound of the output feature range')¶
 - 
min= Param(parent='undefined', name='min', doc='Lower bound of the output feature range')¶
 - 
outputCol= Param(parent='undefined', name='outputCol', doc='output column name.')¶
 - 
params¶
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 
-