FMClassifier¶
- 
class pyspark.ml.classification.FMClassifier(*, featuresCol='features', labelCol='label', predictionCol='prediction', probabilityCol='probability', rawPredictionCol='rawPrediction', factorSize=8, fitIntercept=True, fitLinear=True, regParam=0.0, miniBatchFraction=1.0, initStd=0.01, maxIter=100, stepSize=1.0, tol=1e-06, solver='adamW', thresholds=None, seed=None)[source]¶
- Factorization Machines learning algorithm for classification. - Solver supports: - gd (normal mini-batch gradient descent) 
- adamW (default) 
 - New in version 3.0.0. - Examples - >>> from pyspark.ml.linalg import Vectors >>> from pyspark.ml.classification import FMClassifier >>> df = spark.createDataFrame([ ... (1.0, Vectors.dense(1.0)), ... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) >>> fm = FMClassifier(factorSize=2) >>> fm.setSeed(11) FMClassifier... >>> model = fm.fit(df) >>> model.getMaxIter() 100 >>> test0 = spark.createDataFrame([ ... (Vectors.dense(-1.0),), ... (Vectors.dense(0.5),), ... (Vectors.dense(1.0),), ... (Vectors.dense(2.0),)], ["features"]) >>> model.predictRaw(test0.head().features) DenseVector([22.13..., -22.13...]) >>> model.predictProbability(test0.head().features) DenseVector([1.0, 0.0]) >>> model.transform(test0).select("features", "probability").show(10, False) +--------+------------------------------------------+ |features|probability | +--------+------------------------------------------+ |[-1.0] |[0.9999999997574736,2.425264676902229E-10]| |[0.5] |[0.47627851732981163,0.5237214826701884] | |[1.0] |[5.491554426243495E-4,0.9994508445573757] | |[2.0] |[2.005766663870645E-10,0.9999999997994233]| +--------+------------------------------------------+ ... >>> model.intercept -7.316665276826291 >>> model.linear DenseVector([14.8232]) >>> model.factors DenseMatrix(1, 2, [0.0163, -0.0051], 1) >>> model_path = temp_path + "/fm_model" >>> model.save(model_path) >>> model2 = FMClassificationModel.load(model_path) >>> model2.intercept -7.316665276826291 >>> model2.linear DenseVector([14.8232]) >>> model2.factors DenseMatrix(1, 2, [0.0163, -0.0051], 1) >>> model.transform(test0).take(1) == model2.transform(test0).take(1) True - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with the same uid and some extra params. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - fit(dataset[, params])- Fits a model to the input dataset with optional parameters. - fitMultiple(dataset, paramMaps)- Fits a model to the input dataset for each param map in paramMaps. - Gets the value of factorSize or its default value. - Gets the value of featuresCol or its default value. - Gets the value of fitIntercept or its default value. - Gets the value of fitLinear or its default value. - Gets the value of initStd or its default value. - Gets the value of labelCol or its default value. - Gets the value of maxIter or its default value. - Gets the value of miniBatchFraction or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - getParam(paramName)- Gets a param by its name. - Gets the value of predictionCol or its default value. - Gets the value of probabilityCol or its default value. - Gets the value of rawPredictionCol or its default value. - Gets the value of regParam or its default value. - getSeed()- Gets the value of seed or its default value. - Gets the value of solver or its default value. - Gets the value of stepSize or its default value. - Gets the value of thresholds or its default value. - getTol()- Gets the value of tol or its default value. - Gets the value of weightCol or its default value. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Reads an ML instance from the input path, a shortcut of read().load(path). - read()- Returns an MLReader instance for this class. - save(path)- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. - set(param, value)- Sets a parameter in the embedded param map. - setFactorSize(value)- Sets the value of - factorSize.- setFeaturesCol(value)- Sets the value of - featuresCol.- setFitIntercept(value)- Sets the value of - fitIntercept.- setFitLinear(value)- Sets the value of - fitLinear.- setInitStd(value)- Sets the value of - initStd.- setLabelCol(value)- Sets the value of - labelCol.- setMaxIter(value)- Sets the value of - maxIter.- setMiniBatchFraction(value)- Sets the value of - miniBatchFraction.- setParams(self, \*[, featuresCol, labelCol, …])- Sets Params for FMClassifier. - setPredictionCol(value)- Sets the value of - predictionCol.- setProbabilityCol(value)- Sets the value of - probabilityCol.- setRawPredictionCol(value)- Sets the value of - rawPredictionCol.- setRegParam(value)- Sets the value of - regParam.- setSeed(value)- Sets the value of - seed.- setSolver(value)- Sets the value of - solver.- setStepSize(value)- Sets the value of - stepSize.- setThresholds(value)- Sets the value of - thresholds.- setTol(value)- Sets the value of - tol.- write()- Returns an MLWriter instance for this ML instance. - Attributes - Returns all params ordered by name. - Methods Documentation - 
clear(param)¶
- Clears a param from the param map if it has been explicitly set. 
 - 
copy(extra=None)¶
- Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied. - Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- JavaParams
- Copy of this instance 
 
 
 - 
explainParam(param)¶
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - 
explainParams()¶
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - 
extractParamMap(extra=None)¶
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - 
fit(dataset, params=None)¶
- Fits a model to the input dataset with optional parameters. - New in version 1.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramsdict or list or tuple, optional
- an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models. 
 
- dataset
- Returns
- Transformeror a list of- Transformer
- fitted model(s) 
 
 
 - 
fitMultiple(dataset, paramMaps)¶
- Fits a model to the input dataset for each param map in paramMaps. - New in version 2.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramMapscollections.abc.Sequence
- A Sequence of param maps. 
 
- dataset
- Returns
- _FitMultipleIterator
- A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential. 
 
 
 - 
getFactorSize()¶
- Gets the value of factorSize or its default value. - New in version 3.0.0. 
 - 
getFeaturesCol()¶
- Gets the value of featuresCol or its default value. 
 - 
getFitIntercept()¶
- Gets the value of fitIntercept or its default value. 
 - 
getFitLinear()¶
- Gets the value of fitLinear or its default value. - New in version 3.0.0. 
 - 
getInitStd()¶
- Gets the value of initStd or its default value. - New in version 3.0.0. 
 - 
getLabelCol()¶
- Gets the value of labelCol or its default value. 
 - 
getMaxIter()¶
- Gets the value of maxIter or its default value. 
 - 
getMiniBatchFraction()¶
- Gets the value of miniBatchFraction or its default value. - New in version 3.0.0. 
 - 
getOrDefault(param)¶
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - 
getParam(paramName)¶
- Gets a param by its name. 
 - 
getPredictionCol()¶
- Gets the value of predictionCol or its default value. 
 - 
getProbabilityCol()¶
- Gets the value of probabilityCol or its default value. 
 - 
getRawPredictionCol()¶
- Gets the value of rawPredictionCol or its default value. 
 - 
getRegParam()¶
- Gets the value of regParam or its default value. 
 - 
getSeed()¶
- Gets the value of seed or its default value. 
 - 
getSolver()¶
- Gets the value of solver or its default value. 
 - 
getStepSize()¶
- Gets the value of stepSize or its default value. 
 - 
getThresholds()¶
- Gets the value of thresholds or its default value. 
 - 
getTol()¶
- Gets the value of tol or its default value. 
 - 
getWeightCol()¶
- Gets the value of weightCol or its default value. 
 - 
hasDefault(param)¶
- Checks whether a param has a default value. 
 - 
hasParam(paramName)¶
- Tests whether this instance contains a param with a given (string) name. 
 - 
isDefined(param)¶
- Checks whether a param is explicitly set by user or has a default value. 
 - 
isSet(param)¶
- Checks whether a param is explicitly set by user. 
 - 
classmethod load(path)¶
- Reads an ML instance from the input path, a shortcut of read().load(path). 
 - 
classmethod read()¶
- Returns an MLReader instance for this class. 
 - 
save(path)¶
- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. 
 - 
set(param, value)¶
- Sets a parameter in the embedded param map. 
 - 
setFactorSize(value)[source]¶
- Sets the value of - factorSize.- New in version 3.0.0. 
 - 
setFeaturesCol(value)¶
- Sets the value of - featuresCol.- New in version 3.0.0. 
 - 
setFitIntercept(value)[source]¶
- Sets the value of - fitIntercept.- New in version 3.0.0. 
 - 
setMiniBatchFraction(value)[source]¶
- Sets the value of - miniBatchFraction.- New in version 3.0.0. 
 - 
setParams(self, \*, featuresCol="features", labelCol="label", predictionCol="prediction", probabilityCol="probability", rawPredictionCol="rawPrediction", factorSize=8, fitIntercept=True, fitLinear=True, regParam=0.0, miniBatchFraction=1.0, initStd=0.01, maxIter=100, stepSize=1.0, tol=1e-6, solver="adamW", thresholds=None, seed=None)[source]¶
- Sets Params for FMClassifier. - New in version 3.0.0. 
 - 
setPredictionCol(value)¶
- Sets the value of - predictionCol.- New in version 3.0.0. 
 - 
setProbabilityCol(value)¶
- Sets the value of - probabilityCol.- New in version 3.0.0. 
 - 
setRawPredictionCol(value)¶
- Sets the value of - rawPredictionCol.- New in version 3.0.0. 
 - 
setThresholds(value)¶
- Sets the value of - thresholds.- New in version 3.0.0. 
 - 
write()¶
- Returns an MLWriter instance for this ML instance. 
 - Attributes Documentation - 
factorSize= Param(parent='undefined', name='factorSize', doc='Dimensionality of the factor vectors, which are used to get pairwise interactions between variables')¶
 - 
featuresCol= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
 - 
fitIntercept= Param(parent='undefined', name='fitIntercept', doc='whether to fit an intercept term.')¶
 - 
fitLinear= Param(parent='undefined', name='fitLinear', doc='whether to fit linear term (aka 1-way term)')¶
 - 
initStd= Param(parent='undefined', name='initStd', doc='standard deviation of initial coefficients')¶
 - 
labelCol= Param(parent='undefined', name='labelCol', doc='label column name.')¶
 - 
maxIter= Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')¶
 - 
miniBatchFraction= Param(parent='undefined', name='miniBatchFraction', doc='fraction of the input data set that should be used for one iteration of gradient descent')¶
 - 
params¶
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 - 
predictionCol= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
 - 
probabilityCol= Param(parent='undefined', name='probabilityCol', doc='Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.')¶
 - 
rawPredictionCol= Param(parent='undefined', name='rawPredictionCol', doc='raw prediction (a.k.a. confidence) column name.')¶
 - 
regParam= Param(parent='undefined', name='regParam', doc='regularization parameter (>= 0).')¶
 - 
seed= Param(parent='undefined', name='seed', doc='random seed.')¶
 - 
solver= Param(parent='undefined', name='solver', doc='The solver algorithm for optimization. Supported options: gd, adamW. (Default adamW)')¶
 - 
stepSize= Param(parent='undefined', name='stepSize', doc='Step size to be used for each iteration of optimization (>= 0).')¶
 - 
thresholds= Param(parent='undefined', name='thresholds', doc="Thresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values > 0, excepting that at most one value may be 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class's threshold.")¶
 - 
tol= Param(parent='undefined', name='tol', doc='the convergence tolerance for iterative algorithms (>= 0).')¶
 - 
weightCol= Param(parent='undefined', name='weightCol', doc='weight column name. If this is not set or empty, we treat all instance weights as 1.0.')¶