
L’extension LaTeX piton∗

F. Pantigny
fpantigny@wanadoo.fr

8 janvier 2026

Résumé

L’extension piton propose des outils pour composer des codes informatiques avec coloration
syntaxique. Elle nécessite l’emploi de la LuaLaTeX car le travail principal est fait en utilisant la
bibliothèque Lua LPEG.

1 Présentation

L’extension piton utilise la librairie Lua nommée LPEG1 pour « parser » des listings informatiques
avec coloriage syntaxique. Comme elle utilise le Lua de LuaLaTeX, elle fonctionne uniquement avec
lualatex (et ne va pas fonctionner avec les autres moteurs de compilation LaTeX, que ce soit latex,
pdflatex ou xelatex). Elle n’utilise aucun programme extérieur et donc, a fortiori, elle ne requiert
pas l’utilisation de --shell-escape lors de la compilation. La compilation est très rapide puisque
tout le travail du parseur est fait par la librairie LPEG, écrite en C.

Voici un exemple de code Python composé avec l’environnement {Piton} proposé par piton.

from math import pi

def arctan(x,n:int=10):
 """Calcule la valeur mathématique de arctan(x)

 n est le nombre de termes de la somme
 """
 if x < 0:
 return -arctan(-x) # appel récursif
 elif x > 1:
 return pi/2 - arctan(1/x)
 (on a utilisé le fait que arctan(x) + arctan(1/x) = π/2 pour x > 0)2

 else:
 s = 0
 for k in range(n):
 s += (-1)**k/(2*k+1)*x**(2*k+1)
 return s

Les principaux concurrents de l’extension piton sont certainement les extensions bien connues listings
et minted.

Le nom de cette extension (piton) a été choisi un peu arbitrairement en référence aux pitons d’alpi-
nisme qui servent à gravir les montagnes.

∗Ce document correspond à la version 4.11 de piton, à la date du 2026/01/08.
1LPEG est une librairie de capture de motifs (pattern-matching en anglais) pour Lua, écrite en C, fondée sur les

PEG (parsing expression grammars) : http://www.inf.puc-rio.br/~roberto/lpeg/
2Cet échappement vers LaTeX a été obtenu en débutant par #>.

1

http://www.inf.puc-rio.br/~roberto/lpeg/

L’extension piton se compose de deux fichiers : piton.sty et piton.lua (le fichier LaTeX piton.sty
chargé par \usepackage va à son tour charger le fichier piton.lua). Les deux fichiers doivent être
présents dans un répertoire où LaTeX pourra les trouver, de préférence dans une arborescence texmf.
Le mieux reste néanmoins d’installer piton avec une distribution TeX comme MiKTeX, TeX Live ou
MacTeX.

On remarquera que le caractère quote (U+0027 : ') n’est jamais converti par piton en l’apostrophe
U+2019. Il n’y a pas besoin de charger l’extension upquote.

2 Utilisation de l’extension

L’extension piton doit être utilisée avec LuaLaTeX exclusivement : si un autre moteur de compi-
lation (comme latex, pdflatex ou xelatex) est utilisé, une erreur fatale sera levée.

2.1 Choix du langage

Les langages informatiques pris en charge par piton se classent en deux catégories :

• les langages reconnus nativement par piton qui sont au nombre de quatre : Python, OCaml,
SQL, C (ou plutôt C++) plus deux langages minimalistes nommés minimal3 et verbatim ;

• les langages définis par l’utilisateur avec la commande \NewPitonLanguage décrite p. 10 (les
parseurs de ces langages ne pourront jamais être aussi précis que ceux proposés nativement par
piton).

Par défaut, le langage est Python.
On peut changer de langage avec la clé language de \PitonOptions :
\PitonOptions{language = OCaml}
En fait, le nom des langages, pour piton, est toujours insensible à la casse. Dans cet exemple, on
aurait tout aussi bien pu écrire Ocaml ou ocaml.
Pour les développeurs, précisons que le nom du langage courant est stocké (en minuscules) dans la
variable publique L3 nommée \l_piton_language_str.
Dans la suite de ce document, on parlera préférentiellement de Python mais les fonctionnalités s’ap-
pliquent aussi aux autres langages.

2.2 Chargement de l’extension

L’extension piton se charge simplement avec \usepackage{piton}.
Elle utilise et charge l’extension xcolor. Elle n’utilise pas de programme extérieur.

2.3 Les commandes et environnements à la disposition de l’utilisateur

L’extension piton fournit plusieurs outils pour composer du code informatique : la commande \piton,
l’environnement {Piton} et la commande \PitonInputFile.

• La commande \piton doit être utilisée pour composer de petits éléments de code à l’intérieur
d’un paragraphe. Par exemple :
\piton{def carré(x): return x*x} def carré(x): return x*x

La syntaxe et les particularités de la commande sont détaillées ci-après.

3Le langage minimal peut servir pour formater du pseudo-code : cf. p. 51.

2

• L’environnement {Piton} doit être utilisé pour composer des codes de plusieurs lignes. Comme
cet environnement prend son argument selon un mode verbatim, il ne peut pas être utilisé
dans l’argument d’une commande LaTeX. Pour les besoins de personnalisation, il est pos-
sible de définir de nouveaux environnements similaires à {Piton} en utilisant la commande
\NewPitonEnvironment ou ses variantes : cf. partie 3.3 p. 10.

• La commande \PitonInputFile doit être utilisée pour insérer et composer un fichier externe :
cf. partie 5.1, p. 12.

2.4 La double syntaxe de la commande \piton

La commande \piton possède en fait une double syntaxe. Elle est peut être utilisée comme une
commande standard de LaTeX prenant son argument entre accolades (\piton{...}), ou bien selon la
syntaxe de la commande \verb de LaTeX où l’argument est délimité entre deux caractères identiques
(par ex. : \piton|...| ou \piton+...+). On détaille maintenant ces deux syntaxes.

• Syntaxe \piton{...}

Quand son argument est donné entre accolades, la commande \piton ne prend pas son argument
en mode verbatim. Les points suivants doivent être remarqués :

– plusieurs espaces successives sont remplacées par une unique espace, ainsi que les retours
à la ligne
mais la commande \␣ est fournie pour forcer l’insertion d’une espace ;

– il n’est pas possible d’utiliser le caractère % à l’intérieur,
mais la commande \% est fournie pour insérer un % ;

– les accolades doivent apparaître par paires correctement imbriquées,
mais les commandes \{ et \} sont aussi fournies pour insérer des accolades individuelles ;

– les commandes LaTeX4 de l’argument de \piton sont complètement développées (au sens
de TeX) sans être exécutées
et on peut donc utiliser \\ pour insérer une contre-oblique.

Les autres caractères (y compris #, ^, _, &, $ et @) doivent être insérés sans contre-oblique.

Exemples :
\piton{ma_chaîne = '\\n'} ma_chaîne = '\n'
\piton{def pair(n): return n\%2==0} def pair(n): return n%2==0
\piton{c="#" # une affectation } c="#" # une affectation
\piton{c="#" \ \ \ # une affectation } c="#" # une affectation
\piton{my_dict = {'a': 3, 'b': 4}} my_dict = {'a': 3, 'b': 4}

La commande \piton avec son argument entre accolades peut être utilisée dans les arguments
des autres commandes LaTeX.5

En revanche, comme son argument subit un développement (au sens de TeX), il faut prendre
soin à ne pas utiliser dans son argument de commandes fragiles (c’est-à-dire des commandes
qui ne sont ni protected ni fully expandable).

• Syntaxe \piton|...|

Quand la commande \piton prend son argument entre deux caractères identiques (tous les
caractères sont autorisés sauf %, \, #, {, } et l’espace), cet argument est pris en mode verbatim.

4Cela s’applique aux commandes commençant par une contre-oblique \ mais également aux caractères actifs, c’est-
à-dire ceux de catcode 13.

5La commande \piton peut par exemple être utilisée dans une note de bas de page. Exemple : x = 123.

3

De ce fait, avec cette syntaxe, la commande \piton ne peut pas être utilisée dans l’argument
d’une autre fonction.
Exemples :
\piton|ma_chaîne = '\n'| ma_chaîne = '\n'
\piton!def pair(n): return n%2==0! def pair(n): return n%2==0
\piton+c="#" # une affectation + c="#" # une affectation
\piton?my_dict = {'a': 3, 'b': 4}? my_dict = {'a': 3, 'b': 4}

3 Personnalisation

3.1 Les clés de la commande \PitonOptions

La commande \PitonOptions prend en argument une liste de couples clé=valeur. La portée des
réglages effectués par cette commande est le groupe TeX courant.6
Ces clés peuvent aussi être appliquées à un environnement {Piton} individuel (entre crochets).

• La clé language spécifie le langage informatique considéré (la casse n’est pas prise en compte).
On peut choisir l’un des six langages prédéfinis (Python, OCaml, C, SQL, minimal et verbatim)
ou bien le nom d’un langage défini par l’utilisateur avec \NewPitonLanguage (voir partie 4,
p. 10).
La valeur initiale est Python.

• La clé font-command contient des instructions de fonte qui seront insérées au début de chaque
élément formaté par piton, que ce soit avec la commande \piton, l’environnement {Piton} ou
bien la commande \PitonInputFile (il n’y a que les « commentaires LaTeX » pour lesquels ces
instructions de fonte ne sont pas utilisées).
La valeur initiale de ce paramètre font-command est \ttfamily, ce qui fait, que, par défaut,
piton utilise la fonte mono-chasse courante.

• La clé gobble prend comme valeur un entier positif n : les n premiers caractères de chaque ligne
sont alors retirés (avant formatage du code) dans les environnements {Piton}. Ces n caractères
ne sont pas nécessairement des espaces.
Quand la clé gobble est utilisée sans valeur, elle se comporte comme la clé auto-gobble, que
l’on décrit maintenant.

• Quand la clé auto-gobble est activée, l’extension piton détermine la valeur minimale n du
nombre d’espaces successifs débutant chaque ligne (non vide) de l’environnement {Piton} et
applique gobble avec cette valeur de n.

• Quand la clé env-gobble est activée, piton analyse la dernière ligne de l’environnement, c’est-
à-dire celle qui contient le \end{Piton} et détermine si cette ligne ne comporte que des espaces
suivis par \end{Piton}. Si c’est le cas, piton calcule le nombre n de ces espaces et applique
gobble avec cette valeur de n. Le nom de cette clé vient de environment gobble : le nombre
d’espaces à retirer ne dépend que de la position des délimiteurs \begin{Piton} et \end{Piton}
de l’environnement.

• La clé line-numbers active la numérotation des lignes (en débordement à gauche) dans les
environnements {Piton} et dans les listings produits par la commande \PitonInputFile.
Cette clé propose en fait plusieurs sous-clés.

– La clé line-numbers/skip-empty-lines demande que les lignes vides (qui ne contiennent
que des espaces) soient considérées comme non existantes en ce qui concerne la numérota-
tion des lignes (si la clé /absolute, décrite plus bas, est active, la clé /skip-empty-lines
n’a pas d’effet dans \PitonInputFile). La valeur initiale de cette clé est true (et non
false).7

6On rappelle que tout environnement LaTeX est, en particulier, un groupe.
7Avec le langage Python, les lignes vides des docstrings sont prises en compte.

4

– La clé line-numbers/label-empty-lines demande que les labels (les numéros) des lignes
vides soient affichés. Si la clé /skip-empty-lines est active, la clé /label-empty-lines
est sans effet. La valeur initiale de cette clé est true.8

– Nouveau 4.10
La clé line-numbers/step doit être utilisée quand on ne veut pas faire afficher tous les
numéros de ligne. Si n est la valeur de cette clé, les numéros ne seront affichés que de n
en n. Bien sûr, la valeur initiale vaut 1.

– La clé line-numbers/absolute demande, pour les listings générés par \PitonInputFile,
que les numéros de lignes affichés soient absolus (c’est-à-dire ceux du fichier d’origine).
Elle n’a d’intérêt que si on n’insère qu’une partie du fichier (cf. partie 5.1.2, p. 12). La clé
/absolute est sans effet dans les environnements {Piton}.

– La clé line-numbers/resume reprend la numérotation là où elle avait été laissée au dernier
listing. En fait, la clé line-numbers/resume a un alias, qui est resume tout court (car on
peut être amené à l’utiliser souvent).

– La clé line-numbers/start impose que la numérotation commence à ce numéro.
– La clé line-numbers/sep est la distance horizontale entre les numéros de lignes (insérés

par line-numbers) et les lignes du code informatique. La valeur initiale est 0.7 em.
– La clé line-numbers/format est une liste de tokens qui est insérée avant le numéro de

ligne pour le formater. Il est possible de mettre en dernière position de cette liste une
commande LaTeX à un argument comme \fbox.
La valeur initiale est \footnotesize \color{gray}.

– Nouveau 4.11
La clé line-numbers/position indique la position des numéros : à gauche, avec la valeur
left ou bien à droite avec la valeur right. La valeur initiale est left.

Pour la commodité, un dispositif de factorisation du préfixe line-numbers est disponible, c’est-
à-dire que l’on peut écrire, par exemple :
\PitonOptions
 {
 line-numbers =
 {
 skip-empty-lines = false ,
 label-empty-lines = false ,
 sep = 1 em ,
 format = \footnotesize \color{blue}
 }
 }

Attention : le code précédent ne suffit pas à activer l’affichage des numéros de ligne. Pour cela,
il faut encore utiliser la clé line-numbers de manière absolue (c’est-à-dire sans valeur).

• La clé left-margin fixe une marge sur la gauche. Cette clé peut être utile, en particulier, en
conjonction avec la clé line-numbers si on ne souhaite pas que les numéros de ligne soient dans
une position en débordement sur la gauche.
Il est possible de donner à la clé left-margin la valeur spéciale auto. Avec cette valeur, une
marge est insérée automatiquement pour les numéros de ligne quand la clé line-numbers est
utilisée. Voir un exemple à la partie 8.2 p. 34.

• New 4.11
La clé right-margin est similaire à la clé précédente, mais pour la marge de droite.

• La clé background-color fixe la couleur de fond des environnements {Piton} et des listings
produits par \PitonInputFile (ce fond a une largeur que l’on peut fixer avec la clé width ou
la clé max-width décrites ci-dessous).

8Quand la clé split-on-empty-lines est activée, les labels des lignes vides ne sont jamais imprimés.

5

La clé background-color accepte une couleur définie « à la volée », c’est-à-dire que l’on peut
écrire par exemple background-color = [cmyk]{0.1,0.05,0,0}

La clé background-color accepte aussi en argument une liste de couleurs. Les lignes sont alors
coloriées de manière cyclique avec ces couleurs.

Dans cette liste, la couleur spéciale none désigne une absence de couleur.
Exemple : \PitonOptions{background-color = {gray!5,none}}

• On peut utiliser rounded-corners pour demander des coins arrondis pour les fonds colorés
spécifiés par background-color. La valeur initiale de ce paramètre est 0 pt, ce qui fait que
les coins ne sont pas arrondis. Si on utilise la clé rounded-corners, l’extension tikz doit être
chargée car ces coins arrondis sont tracés avec tikz. Si tikz n’est pas chargé, une erreur sera levée
à la première utilisation de la clé rounded-corners.
La valeur par défaut de rounded-corners vaut 4 pt.9

• Avec la clé prompt-background-color , piton ajoute un fond coloré aux lignes débutant par
le prompt « >>>» (et sa continuation « ...») caractéristique des consoles Python avec boucle
repl (read-eval-print loop). Pour un exemple d’utilisation de cette clé, voir la partie 8.6.2 p. 43.
La valeurs initiale est : gray!15

• La clé width fixe la largeur du listing produit. La valeur initiale de ce paramètre est la valeur
courante de \linewidth (paramètre LaTeX qui indique la largeur courante des lignes de texte).
Ce paramètre est utilisé pour :

– couper les lignes trop longues (sauf, bien sûr, quand la clé break-lines est mise à false :
cf. p. 20) ;

– les fonds colorés spécifiés par les clés background-color et prompt-background-color ;
– les fonds colorés tracés par la clé \rowcolor (cf. p.8) ;
– la largeur de la boîte LaTeX créée par la clé box (cf. p. 15) ;
– la largeur de la boîte graphique créée par la clé tcolorbox (cf. p. 16).

• La clé max-width est similaire à la clé width mais elle fixe la largeur maximale des lignes. Si
les lignes du listings sont toutes plus courtes que la valeur fournie à max-width, la largeur (qui
sera transmise au paramètre width) sera la largeur maximale des lignes du listing, c’est-à-dire
la largeur naturelle du listing.
Pour la lisibilité du code, width=min est un raccourci pour max-width=\linewidth.

• En activant la clé show-spaces-in-strings , les espaces dans les chaînes de caractères10 sont
matérialisés par le caractère ␣ (U+2423 : open box). Bien sûr, le caractère U+2423 doit être
présent dans la fonte mono-chasse utilisée.11

Exemple : my_string = 'Très␣bonne␣réponse'

• Avec la clé show-spaces , tous les espaces sont matérialisés par le caractère ␣ (et aucune coupure
de ligne ne peut plus intervenir sur ces espaces matérialisés, même quand la clé break-lines12

est active). Il faut néanmoins remarquer que les espaces en fin de ligne sont tous supprimés par
piton — et ne seront donc pas représentés par ␣. Pour leur part, quand la clé show-spaces est
active, les tabulations de début de ligne sont représentées par des flèches.

9Cette valeur par défaut est la valeur initiale des rounded corners de tikz.
10Pour le langage Python, cela ne s’applique que pour les chaînes courtes, c’est-à-dire celles délimitées par ' ou " et,

en particulier, cela ne s’applique pas pour les doc strings. En OCaml, cela ne s’applique pas pour les quoted strings.
11La valeur initiale de font-command est \ttfamily ce qui fait que, par défaut, l’extension piton utilise simplement la

fonte mono-chasse courante.
12cf. 6.3.1 p. 20.

6

\begin{Piton}[language=C,line-numbers,gobble,background-color=gray!15
rounded-corners,width=min,splittable=4]

void bubbleSort(int arr[], int n) {
int temp;
int swapped;
for (int i = 0; i < n-1; i++) {

swapped = 0;
for (int j = 0; j < n - i - 1; j++) {

if (arr[j] > arr[j + 1]) {
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
swapped = 1;

}
}
if (!swapped) break;

}
}

\end{Piton}

 void bubbleSort(int arr[], int n) {
 int temp;
 int swapped;
 for (int i = 0; i < n-1; i++) {
 swapped = 0;
 for (int j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 temp = arr[j];
 arr[j] = arr[j + 1];
 arr[j + 1] = temp;
 swapped = 1;
 }
 }
 if (!swapped) break;
 }
 }

La commande \PitonOptions propose d’autres clés qui seront décrites plus loin (voir en particulier
la coupure des pages et des lignes p. 20).

3.2 Les styles

3.2.1 Notion de style

L’extension piton fournit la commande \SetPitonStyle pour personnaliser les différents styles utilisés
pour formater les éléments syntaxiques des listings informatiques. Ces personnalisations ont une
portée qui correspond au groupe TeX courant.13

La commande \SetPitonStyle prend en argument une liste de couples clé=valeur. Les clés sont les
noms des styles et les valeurs sont les instructions LaTeX de formatage correspondantes.

Ces instructions LaTeX doivent être des instructions de formatage du type de \bfseries, \slshape,
\color{...}, etc. (les commandes de ce type sont parfois qualifiées de semi-globales). Il est aussi
possible de mettre, à la fin de la liste d’instructions, une commande LaTeX prenant exactement un
argument.

Voici un exemple qui change le style utilisé pour le nom d’une fonction Python, au moment de sa
définition (c’est-à-dire après le mot-clé def). Elle utilise la commande \highLight de lua-ul (qui
nécessite lui-même le chargement de luacolor).

13On rappelle que tout environnement LaTeX est, en particulier, un groupe.

7

\SetPitonStyle
 { Name.Function = \bfseries \highLight[red!30] }
Ici, \highLight[red!30] doit être considéré comme le nom d’une fonction LaTeX qui prend exacte-
ment un argument, puisque, habituellement, elle est utilisée avec \highLight[red!30]{text}.

Avec ce réglage, on obtient : def cube(x) : return x * x * x

L’usage des différents styles suivant le langage informatique considéré est décrit dans la partie 9, à
partir de la page 46.

La commande \PitonStyle prend en argument le nom d’un style et permet de récupérer la valeur (en
tant que liste d’instructions LaTeX) de ce style. Cette commande est « complètement développable »
au sens de TeX.
Par exemple, on peut écrire, dans le texte courant, {\PitonStyle{Keyword}{function}} et on aura
le mot function formaté comme un mot-clé.
La syntaxe {\PitonStyle{style}{...}} est nécessaire pour pouvoir tenir compte à la fois des com-
mandes semi-globales et des commandes à argument potentiellement présentes dans la valeur courante
du style style.

3.2.2 Styles locaux et globaux

Un style peut être défini de manière globale avec la commande \SetPitonStyle. Cela veut dire qu’il
s’appliquera par défaut à tous les langages informatiques qui utilisent ce style.

Par exemple, avec la commande

\SetPitonStyle{Comment = \color{gray}}

tous les commentaires (que ce soit en Python, en C, en OCaml, etc. ou dans un langage défini avec
\NewPitonLanguage) seront composés en gris.

Mais il est aussi possible de définir un style localement pour un certain langage informatique en passant
le nom du langage en argument optionnel (entre crochets) de la commande \SetPitonStyle.14

Par exemple, avec la commande

\SetPitonStyle[SQL]{Keyword = \color[HTML]{006699} \bfseries \MakeUppercase}

les mots-clés dans les listings SQL seront composés en lettres capitales, même s’ils s’apparaissent en
minuscules dans le fichier source LaTeX (on rappelle que, en SQL, les mot-clés ne sont pas sensibles
à la casse et donc forcer leur mise en capitales peut être envisagé).

Comme on s’en doute, si un langage informatique utilise un certain style et que ce style n’est pas
défini localement pour ce langage, c’est la version globale qui est utilisée. Cette notion de globalité
n’a pas de rapport avec la notion de liaison locale de TeX (notion de groupe TeX).15

Les styles fournis par défaut par piton sont tous définis globalement.

3.2.3 La commande \rowcolor

Nouveau 4.8

L’extension piton fournit la commande \rowcolor qui impose un fond coloré à la ligne courante
(toute la ligne et pas seulement la partie contenant du texte) et que l’on peut utiliser dans les styles.
La commande \rowcolor a une syntaxe similaire à la commande classique \color. Par exemple, il
est possible d’écrire \rowcolor[rgb]{0.8,1,0.8}.
La commande \rowcolor est protégée contre le développement TeX.
Voici un exemple pour le langage Python où on modifie le style String.Doc des documentation strings
pour avoir un fond coloré gris.

14On rappelle que, dans piton, les noms des langages informatiques ne sont pas sensibles à la casse.
15Du point de vue des groupes de TeX, les liaisons faites par \SetPitonStyle sont toujours locales.

8

\SetPitonStyle{String.Doc = \rowcolor{gray!15}\color{black!80}}
\begin{Piton}[width=min]
def square(x):

"""Calcule le carré de x
Deuxième ligne de la documentation"""

return x*x
\end{Piton}

def square(x):
 """Calcule le carré de x
 Deuxième ligne de la documentation"""
 return x*x

Si la commande \rowcolor apparaît (via un style de piton) dans une commande \piton, elle est sans
effet (comme on s’en doute).

3.2.4 Le style UserFunction

Il existe un style spécial nommé UserFunction. Ce style s’applique aux noms des fonctions précé-
demment définies par l’utilisateur (par exemple, avec le langage Python, ces noms de fonctions sont
ceux qui apparaissent après le mot-clé def dans un listing Python précédent). La valeur initiale de
ce style est \PitonStyle{Identifier}, ce qui fait que ces noms de fonctions sont formatés comme
les autres identificateurs (c’est-à-dire, par défaut, sans formatage particulier, si ce n’est celui donné
par font-command).
Néanmoins, il est possible de changer la valeur de ce style, comme tous les autres styles, avec la
commande \SetPitonStyle.

Dans l’exemple suivant, on règle les styles Name.Function et UserFunction de manière à ce que,
quand on clique sur le nom d’une fonction Python précédemment définie par l’utilisateur, on soit
renvoyé vers la définition (informatique) de cette fonction. Cette programmation utilise les fonctions
\hypertarget et \hyperlink de hyperref.

\NewDocumentCommand{\MyDefFunction}{m}
 {\hypertarget{piton:#1}{\color[HTML]{CC00FF}{#1}}}
\NewDocumentCommand{\MyUserFunction}{m}{\hyperlink{piton:#1}{#1}}

\SetPitonStyle{Name.Function = \MyDefFunction, UserFunction = \MyUserFunction}

def transpose(v,i,j):
 x = v[i]
 v[i] = v[j]
 v[j] = x

def passe(v):
 for in in range(0,len(v)-1):
 if v[i] > v[i+1]:
 transpose(v,i,i+1)

(Certains lecteurs de pdf affichent un cadre autour du mot transpose cliquable et d’autres non.)

Bien sûr, la liste des noms de fonctions Python précédemment définies est gardée en mémoire de LuaLaTeX
(de manière globale, c’est-à-dire indépendamment des groupes TeX). L’extension piton fournit une commande
qui permet de vider cette liste : c’est la commande \PitonClearUserFunctions . Quand elle est utilisée
sans argument, cette commande s’applique à tous les langages informatiques utilisées par l’utilisateur mais
on peut spécifier en argument optionnel (entre crochets) une liste de langages informatiques auxquels elle
s’appliquera.16

16On rappelle que, dans piton, les noms des langages informatiques ne sont pas sensibles à la casse.

9

3.3 Définition de nouveaux environnements

Comme l’environnement {Piton} a besoin d’absorber son contenu d’une manière spéciale (à peu près
comme du texte verbatim), il n’est pas possible de définir de nouveaux environnements directement
au-dessus de l’environnement {Piton} avec les commandes classiques \newenvironment (de LaTeX
standard) et \NewDocumentEnvironment (de LaTeX3).
Il est possible d’utiliser \NewEnvironmentCopy sur l’environment {Piton} mais l’utilité est limitée.
C’est pourquoi piton propose une commande \NewPitonEnvironment . Cette commande a la même
syntaxe que la commande classique \NewDocumentEnvironment.17

Il existe aussi les commandes suivantes similaires à celles de LaTeX3 : \RenewPitonEnvironment ,
\DeclarePitonEnvironment et \ProvidePitonEnvironment .

Par exemple, avec l’instruction suivante, un nouvel environnement {Python} sera défini avec le même
comportement que l’environnement {Piton} :

\NewPitonEnvironment{Python}{O{}}{\PitonOptions{#1}}{}

Si on souhaite un environnement {Python} qui compose le code inclus dans une boîte de mdframed,
on peut écrire :
\usepackage[framemethod=tikz]{mdframed} % dans le préambule

\NewPitonEnvironment{Python}{}
 {\begin{mdframed}[roundcorner=3mm]}
 {\end{mdframed}}

Avec ce nouvel environnement {Python}, on peut écrire :

\begin{Python}
def carré(x):
 """Calcule le carré de x"""
 return x*x
\end{Python}

def carré(x):
 """Calcule le carré de x"""
 return x*x

On peut faire une construction similaire avec une boîte graphique de tcolorbox. Néanmoins, pour
permettre une meilleure cohérence entre tcolorbox et piton, l’extension piton propose la clé tcolorbox :
cf. p. 16.

4 Définition de nouveaux langages avec la syntaxe de listings

L’extension listings est une célèbre extension LaTeX pour formater des codes informatiques.

Elle propose une commande \lstdefinelanguage pour définir de nouveaux langages. Cette com-
mande est aussi utilisée en interne par listings pour sa définition des languages (en fait, pour cela,
listings utilise une commande nommée \lst@definelanguage mais celle-ci a la même syntaxe que
\lstdefinelanguage).

L’extension piton propose une commande \NewPitonLanguage pour définir de nouveaux langages
(utilisables avec les outils de piton) avec quasiment la même syntaxe que \lstdefinelanguage.

17Néanmoins, le spécificateur d’argument b, qui sert à capter le corps de l’environnement comme un argument LaTeX,
n’est pas autorisé (bien entendu).

10

Précisons tout de suite que l’extension piton n’utilise pas cette commande pour définir les langages
qu’elle propose nativement (Python, C, OCaml, SQL, minimal et verbatim), ce qui permet de pro-
poser des parseurs plus puissants.

Par exemple, dans le fichier lstlang1.sty, qui est un des fichiers de definition des langages proposés
par défaut par listings, on trouve les instructions suivantes (dans la version 1.10a).

\lstdefinelanguage{Java}%
{morekeywords={abstract,boolean,break,byte,case,catch,char,class,%

const,continue,default,do,double,else,extends,false,final,%
finally,float,for,goto,if,implements,import,instanceof,int,%
interface,label,long,native,new,null,package,private,protected,%
public,return,short,static,super,switch,synchronized,this,throw,%
throws,transient,true,try,void,volatile,while},%

sensitive,%
morecomment=[l]//,%
morecomment=[s]{/*}{*/},%
morestring=[b]",%
morestring=[b]',%
}[keywords,comments,strings]

Pour définir un language nommé Java pour piton, il suffit d’écrire le code suivant, où le dernier
argument de \lst@definelanguage, qui est entre crochets, a été supprimé (en fait, les
symboles % pourraient être supprimés sans problème).

\NewPitonLanguage{Java}%
{morekeywords={abstract,boolean,break,byte,case,catch,char,class,%

const,continue,default,do,double,else,extends,false,final,%
finally,float,for,goto,if,implements,import,instanceof,int,%
interface,label,long,native,new,null,package,private,protected,%
public,return,short,static,super,switch,synchronized,this,throw,%
throws,transient,true,try,void,volatile,while},%

sensitive,%
morecomment=[l]//,%
morecomment=[s]{/*}{*/},%
morestring=[b]",%
morestring=[b]',%
}

On peut alors utiliser le language Java comme n’importe quel autre langage prédéfini de piton.
Voici un exemple de code Java formaté dans un environnement {Piton} avec la clé language=Java.18

public class Cipher { // cryptage par le chiffre de César
 public static void main(String[] args) {
 String str = "The quick brown fox Jumped over the lazy Dog";
 System.out.println(Cipher.encode(str, 12));
 System.out.println(Cipher.decode(Cipher.encode(str, 12), 12));
 }

 public static String decode(String enc, int offset) {
 return encode(enc, 26-offset);
 }

 public static String encode(String enc, int offset) {
 offset = offset % 26 + 26;
 StringBuilder encoded = new StringBuilder();
 for (char i : enc.toCharArray()) {
 if (Character.isLetter(i)) {
 if (Character.isUpperCase(i)) {

18On rappelle que, pour piton, les noms de langages informatiques ne sont pas sensibles à la casse, ce qui fait que l’on
aurait pu aussi bien utiliser : language=java.

11

 encoded.append((char) ('A' + (i - 'A' + offset) % 26));
 } else {
 encoded.append((char) ('a' + (i - 'a' + offset) % 26));
 }
 } else {
 encoded.append(i);
 }
 }
 return encoded.toString();
 }
}

Les clés de la commande \lstdefinelanguage de listings prises en charge par \NewPitonLanguage
sont : morekeywords, otherkeywords, sensitive, keywordsprefix, moretexcs, morestring (avec
les lettres b, d, s et m), morecomment (avec les lettres i, l, s et n), moredelim (avec les lettres i, l,
s, * et **), moredirectives, tag, alsodigit, alsoletter et alsoother.
Pour la description de ces clés, on renvoie à la documentation de listings (taper texdoc listings
dans un terminal).

Par exemple, pour formater du code LaTeX, on pourra créer le language suivant :

\NewPitonLanguage{LaTeX}{keywordsprefix = \ , alsoother = @_ }

Initialement, les caractères @ et _ sont considérés comme des lettres car de nombreux langages de
programmation les autorisent dans les mots-clés et les identificateurs. Avec alsoother = @_, on les
retire de la catégorie des lettres.

5 Importation et exportation de listings

5.1 Importation d’un listing fourni par un fichier externe

5.1.1 La commande \PitonInputFile

La commande \PitonInputFile permet d’insérer tout ou partie d’un fichier extérieur dont le nom
est passé en argument. Il existe aussi des commandes \PitonInputFileT , \PitonInputFileF et
\PitonInputFileTF avec des arguments correspondant aux lettres T et F, arguments qui seront
exécutés dans le cas où le fichier a été trouvé (lettre T) ou pas (lettre F).
La syntaxe des chemins (absolus et relatifs) est la suivante :

• Les chemins commençant par / sont des chemins absolus.
Exemple : \PitonInputFile{/Users/joe/Documents/programme.py}

• Les chemins ne commençant pas par / sont relatifs au répertoire courant.
Exemple : \PitonInputFile{les_listings/programme.py}

La clé path de la commande \PitonOptions permet de spécifier une liste de chemins où sera recherché
le fichier à inclure (dans cette liste, les chemins sont séparés par des virgules). Comme précédemment,
les chemins absolus doivent débuter par une oblique /.

5.1.2 Insertion d’une partie d’un fichier

En fait, il existe des mécanismes permettant de n’insérer qu’une partie du fichier en question.

• On peut spécifier la partie à insérer par les numéros de lignes (dans le fichier d’origine).

• On peut aussi spécifier la partie à insérer par des marqueurs textuels.

12

Dans les deux cas, si on souhaite numéroter les lignes avec les numéros des lignes du fichier d’origine,
il convient d’utiliser la clé line-numbers/absolute.

Avec les numéros de lignes absolus
La commande \PitonInputFile propose les clés first-line et last-line qui permettent de n’in-
sérer que la partie du fichier comprise entre les lignes correspondantes. Ne pas confondre avec la
clé line-numbers/start qui demande un numérotage des lignes commençant à la valeur donnée à
cette clé (en un sens line-numbers/start concerne la sortie alors que first-line et last-line
concernent l’entrée).

Avec des marqueurs textuels
Pour utiliser cette technique, il convient d’abord de spécifier le format des marqueurs marquant le
début et la fin de la partie du fichier à inclure. Cela se fait avec les deux clés marker/beginning et
marker/end (usuellement dans la commande \PitonOptions).
Prenons d’abord un exemple.
Supposons que le fichier à inclure contienne des solutions à des exercices de programmation sur le
modèle suivant :
#[Exercice 1] Version itérative
def fibo(n):
 if n==0: return 0
 else:
 u=0
 v=1
 for i in range(n-1):
 w = u+v
 u = v
 v = w
 return v
#<Exercice 1>
Les marqueurs de début de début et de fin sont les chaînes #[Exercice 1] et #<Exercice 1>. La
chaîne « Exercice 1» sera appelée le label de l’exercice (ou de la partie du fichier à inclure).
Pour spécifier des marqueurs de cette sorte dans piton, on utilisera les clés marker/beginning et
marker/end de la manière suivante (le caractère # des commentaires de Python doit être inséré sous
la forme échappée \#).
\PitonOptions{ marker/beginning = \#[#1] , \emph{marker/end} = \#<#1> }
Comme on le voit, marker/beginning est une expression correspondant à la fonction mathématique
qui, au nom du label (par exemple Exercice 1), associe le marqueur de début (dans l’exemple
#[Exercice 1]). La chaîne #1 correspond aux occurrences de l’argument de cette fonction (c’est la
syntaxe habituelle de TeX). De même pour marker/end.19

Pour insérer une partie marquée d’un fichier, il suffit alors d’utiliser la clé range de \PitonInputFile.

\PitonInputFile[range = Exercice 1]{nom_du_fichier}

def fibo(n):
 if n==0: return 0
 else:
 u=0
 v=1
 for i in range(n-1):
 w = u+v
 u = v
 v = w
 return v

19Du point de vue de LaTeX, les deux fonctions passées en argument doivent être fully expandable.

13

La clé marker/include-lines demande que les lignes contenant les marqueurs soient également
insérées.

\PitonInputFile[marker/include-lines,range = Exercice 1]{nom_du_fichier}

#[Exercice 1] Version itérative
def fibo(n):
 if n==0: return 0
 else:
 u=0
 v=1
 for i in range(n-1):
 w = u+v
 u = v
 v = w
 return v
#<Exercice 1>

Il existe en fait aussi les clés begin-range et end-range pour insérer plusieurs contenus marqués
simultanément.
Par exemple, pour insérer les solutions des exercices 3 à 5, on pourra écrire (à condition que le fichier
soit structuré correctement !) :

\PitonInputFile[begin-range = Exercice 3, end-range = Exercice 5]{nom_du_fichier}

5.2 Exportation de listings

À côté de la commande \PitonInputFile qui permet d’insérer dans le pdf tout ou partie d’un fichier
extérieur, piton propose des outils pour exporter des listings inclus dans le fichier source LaTeX vers
le disque ou bien en pièces jointes du pdf généré.

• La clé write prend en argument un nom de fichier (avec l’extension) et écrit le contenu20 de
l’environnement courant dans ce fichier. À la première utilisation du fichier par piton (au cours
d’une compilation avec LuaLaTeX), celui-ci est effacé. L’écriture du fichier ne se fait en fait
qu’à la fin de la compilation avec LuaLaTeX.
Pour la lisibilité, piton fournit la clé no-write (sans valeur) comme alias de write=.

• La clé path-write indique un chemin où seront écrits les fichiers écrits par l’emploi de la clé
write précédente.

• La clé join est similaire à la clé write mais les fichiers créés sont joints (comme « pièces
jointes ») dans le pdf. Attention : certains lecteurs de pdf ne proposent pas d’outil permettant
d’accéder à ces fichiers joints.
Pour la lisibilité, piton fournit la clé no-join (sans valeur) comme alias de join=.

• La clé print contrôle l’affichage effectif du contenu des environnements {Piton} dans le pdf.
Bien entendu, la valeur initiale de cette clé est true. Néanmoins, dans certains circonstances,
il peut être utile d’utiliser print=false (dans le cas, par exemple, où la clé write, ou bien la
clé join, est utilisée).

• Nouveau 4.9
La clé paperclip va, pour chaque environnement {Piton}, ajouter dans la marge droite une
annotation pdf liée à un fichier joint dans le pdf correspondant au listing de l’environnement.
La valeur fournie à la clé paperclip est le nom qui sera donné au fichier joint. Si aucune
valeur n’est fournie, le fichier sera nommé listing_i.txt où i est un compteur géré par piton
incrémenté à chaque utilisation de la clé paperclip sans valeur.

20En fait, il ne s’agit pas exactement du contenu de l’environnement mais de la valeur renvoyée par l’instruction Lua
piton.get_last_code() qui en est une version sans les surcharges de formatage LaTeX (voir la partie 7, p. 33).

14

\begin{Piton}[paperclip,background-color=gray!15]
def carré(x):
 """Calcule le carré de x"""
 return x*x
\end{Piton}

def carré(x):
 """Calcule le carré de x"""
 return x*x

• Nouveau 4.9
La clé annotation va, pour chaque environnement {Piton}, ajouter dans la marge droite une
annotation pdf de type note contenant directement le listing de l’environnement {Piton}.

\begin{Piton}[annotation,background-color=gray!15]
def carré(x):
 """Calcule le carré de x"""
 return x*x
\end{Piton}

def carré(x):
 """Calcule le carré de x"""
 return x*x

6 Fonctionnalités avancées

6.1 La clé « box »

Si on souhaite composer un listing dans une boîte de LaTeX, on doit utiliser la clé box . Cette clé
prend comme valeur c, t ou b correspondant au paramètre de position verticale (comme dans un
environnement {minipage} de LaTeX, qui crée aussi une boîte LaTeX). La valeur par défaut est c
(comme pour {minipage}).
L’emploi de la clé box active width=min (sauf, bien sûr, si on utilise explicitement width ou max-
width). Pour les clés width et max-width, cf. p. 6.
\begin{center}
\PitonOptions{box,background-color=gray!15}
\begin{Piton}
def square(x):
 return x*x
\end{Piton}
\hspace{1cm}
\begin{Piton}
def cube(x):
 return x*x*x
\end{Piton}
\end{center}

def square(x):
 return x*x

def cube(x):
 return x*x*x

Il est possible d’utiliser la clé box avec une valeur numérique pour width (5 cm dans l’exemple qui
suit).

15

def carré(x):
 """Calcule le carré de x"""
 return x*x

The computer listing

Computer listing
def carré(x):
 """Calcule le carré de x"""
 return x*x

\begin{center}
\PitonOptions{box,width=5cm,background-color=gray!15}
\begin{Piton}
def square(x):
 return x*x
\end{Piton}
\hspace{1cm}
\begin{Piton}
def cube(x):
 return x*x*x
\end{Piton}
\end{center}

def square(x):
 return x*x

def cube(x):
 return x*x*x

Voici un exemple avec la clé max-width, égale à 7 cm pour les deux listings.
\begin{center}
\PitonOptions{box=t,max-width=7cm,background-color=gray!15}
\begin{Piton}
def square(x):
 return x*x
\end{Piton}
\hspace{1cm}
\begin{Piton}
def P(x):
 return 24*x**8 - 7*x**7 + 12*x**6 -4*x**5 + 4*x**3 + x**2 - 5*x + 2
\end{Piton}
\end{center}

def square(x):
 return x*x

def P(x):
 return 24*x**8 - 7*x**7 + \

+ 12*x**6 -4*x**5 + 4*x**3 + x**2 - \
+ 5*x + 2

6.2 La clé « tcolorbox »

L’extension piton propose une clé tcolorbox qui facilite l’utilisation de l’extension tcolorbox en
coordination avec l’extension piton. Néanmoins, l’extension piton ne charge pas tcolorbox et l’utili-
sateur final doit l’avoir chargée. Il doit aussi avoir chargé la librairie breakable de tcolorbox avec
\tcbuselibrary{breakable} dans le préambule du document LaTeX. Si ce n’est pas le cas, une
erreur sera levée à la première utilisation de la clé tcolorbox.

Quand la clé tcolorbox est utilisée, le listing formaté par piton est inclus dans un environnement
{tcolorbox}. Cela s’applique aussi bien à la commande \PitonInputFile qu’à un environnement
{Piton} (ou, plus généralement, à un environnement défini par \NewPitonEnvironment : cf. p. 10).
Dans le cas où la clé splittable de piton est utilisée (cf. p. 21), la boîte graphique créée par tcolorbox
sera sécable par un saut de page.

Dans le présent document, on a, de plus, chargé, dans le préambule du document LaTeX, la librairie
skins de tcolorbox et activé la skin enhanced pour avoir une meilleure apparence au niveau du saut
de page.
\tcbuselibrary{skins,breakable} % dans le préambule
\tcbset{enhanced} % dans le préambule

16

\begin{Piton}[tcolorbox,splittable=3]
def carré(x):
 """Calcule le carré de x"""
 return x*x
...
def carré(x):
 """Calcule le carré de x"""
 return x*x
\end{Piton}

def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""

17

 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x

Bien sûr, si on veut changer la couleur du fond, on n’utilise pas background-color de piton mais les
outils fournis par tcolorbox (la clé colback pour la couleur du fond).

Si on souhaite ajuster la largeur de la boîte graphique au contenu, il suffit d’utiliser la clé width=min
fournie par piton (cf. p. 6). On peut aussi utiliser width ou max-width avec une valeur numérique.
L’environnement est sécable si la clé splittable est utilisée (cf. p. 21).
\begin{Piton}[tcolorbox,width=min,splittable=3]
def carré(x):
 """Calcule le carré de x"""
 return x*x
...
def carré(x):
 """Calcule le carré de x"""
 return x*x
\end{Piton}

def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""

18

 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x

Si on souhaite que le résultat soit produit dans une boîte LaTeX (en dépit de son nom, un environne-
ment de tcolorbox n’est pas nécessairement une boîte LaTeX), il suffit d’utiliser, conjointement avec
la clé tcolorbox, la clé box fournie par piton (cf. p. 15). Bien sûr, la boîte LaTeX ainsi créée ne sera
pas sécable par un saut de page (comme toutes les boîtes de LaTeX), même si la clé splittable
(cf. p. 21) est active.
On rappelle que l’emploi de la clé box active width=min (sauf si on utilise explicitement width ou
max-width).
\begin{center}
\PitonOptions{tcolorbox,box=t}
\begin{Piton}
def square(x):
 return x*x
\end{Piton}
\hspace{1cm}
\begin{Piton}
def cube(x):
 """Le cube de x"""
 return x*x*x
\end{Piton}
\end{center}

19

def square(x):
 return x*x

def cube(x):
 """Le cube de x"""
 return x*x*x

Pour un exemple plus sophistiqué d’utilisation de la clé tcolorbox, voir l’exemple fourni à la page 38.

6.3 Coupure des lignes et des pages

6.3.1 Coupure des lignes

Il existe des clés pour contrôler les coupures de ligne (les points de coupure possibles sont les espaces,
y compris les espaces qui sont dans les chaînes de caractères des langages informatiques).

• Avec la clé break-lines-in-piton , les coupures de ligne sont autorisées dans la commande
\piton{...} (mais pas dans la commande \piton|...|, c’est-à-dire avec la syntaxe verbatim).

• Avec la clé break-lines-in-Piton , les coupures de ligne sont autorisées dans l’environnement
{Piton} (d’où la lettre P capitale dans le nom) et les listings produits par \PitonInputFile.
La valeur initiale de ce paramètre est true (et non false).

• La clé break-lines est la conjonction des deux clés précédentes.

L’extension piton fournit aussi plusieurs clés pour contrôler l’apparence des coupures de ligne autori-
sées par break-lines-in-Piton.

• Avec la clé indent-broken-lines , l’indentation de la ligne coupée est respectée à chaque retour
à la ligne (à condition que la fonte utilisée soit une fonte mono-chasse, ce qui est le cas par défaut
puisque la valeur initiale de font-command est \ttfamily).

• La clé end-of-broken-line correspond au symbole placé à la fin d’une ligne coupée. Sa valeur
initiale est : \hspace*{0.5em}\textbackslash.

• La clé continuation-symbol correspond au symbole placé à chaque retour de ligne dans la
marge gauche. Sa valeur initiale est : +\; (la commande \; insère un petit espace horizontal).

• La clé continuation-symbol-on-indentation correspond au symbole placé à chaque retour
de ligne au niveau de l’indentation (uniquement dans le cas où la clé indent-broken-lines est
active). Sa valeur initiale est : $\hookrightarrow\;$.

Le code suivant a été composé avec le réglage suivant :

\PitonOptions{width=12cm,indent-broken-lines,background-color=gray!15}

def dict_of_liste(liste):
 """Convertit une liste de subrs et de descriptions de \

+ ↪→ glyphes en dictionnaire"""
 dict = {}
 for liste_lettre in liste:
 if (liste_lettre[0][0:3] == 'dup'): # si c'est un subr
 nom = liste_lettre[0][4:-3]
 print("On traite le subr de numéro " + nom)
 else:
 nom = liste_lettre[0][1:-3] # si c'est un glyphe
 print("On traite le glyphe du caractère " + nom)
 dict[nom] = [traite_ligne_Postscript(k) for k in \

+ ↪→ liste_lettre[1:-1]]
 return dict

20

Avec la clé break-strings-anywhere , les chaînes de caractères pourront être coupées n’importe où
(et pas seulement sur les espaces).

Avec la clé break-numbers-anywhere , les nombres peuvent être coupés n’importe où.

6.3.2 Coupure des pages

Par défaut, les listings produits par l’environnement {Piton} et par la commande \PitonInputFile
sont insécables.
Néanmoins, piton propose les clés splittable-on-empty-lines et splittable pour autoriser de
telles coupures.

• La clé splittable-on-empty-lines autorise les coupures sur les lignes vides du listing. Les
lignes considérées comme vides sont celles qui ne comportent que des espaces (et il aurait peut-
être été plus habile de parler de lignes blanches).

• La clé splittable-on-empty-lines peut bien sûr être insuffisante et c’est pourquoi piton
propose la clé splittable .
Quand la clé splittable est utilisée avec la valeur numérique n (qui doit être un entier naturel
non nul) le listing pourra être coupé n’importe où avec cette exception qu’aucune coupure ne
pourra avoir lieu entre les n premières lignes, ni entre les n dernières.21

Par exemple, splittable = 4 pourrait être un réglage raisonnable.
Employée sans argument, la clé splittable est équivalente à splittable = 1, et les listings
sont alors sécables n’importe où (ce n’est pas recommandable).
La valeur initiale de la clé splittable vaut 100, ce qui fait que les listings ne sont pas sécables.

Même avec une couleur de fond (fixée avec background-color), les sauts de page sont pos-
sibles, à partir du moment où splittable-on-empty-lines ou splittable est utilisée.

Avec la clé splittable, un environnement {Piton} est sécable même dans un environnement
de tcolorbox (à partir du moment où la clé breakable de tcolorbox est utilisée). On précise cela
parce que, en revanche, un environnement de tcolorbox inclus dans un autre environnement de
tcolorbox n’est pas sécable, même quand les deux utilisent la clé breakable de tcolorbox.

On illustre ce point avec le code suivant (l’environnement {tcolorbox} dans lequel nous nous
trouvons utilise la clé breakable).

\begin{Piton}[background-color=gray!30,rounded-corners,
 width=min,splittable=4]
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
...
def carré(x):
 """Calcule le carré de x"""
 return x*x
\end{Piton}

21Remarquer que l’on parle des lignes du listing d’origine, une telle ligne pouvant être composée sur plusieurs lignes
dans le pdf final (quand la clé break-lines-in-Piton est active).

21

def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x
def carré(x):
 """Calcule le carré de x"""
 return x*x

6.4 Découpe d’un listing en sous-listings

L’exension piton fournit la clé split-on-empty-lines , qui ne doit pas être confondue avec la clé
splittable-on-empty-lines définie précédemment.
Pour comprendre le fonctionnement de la clé split-on-empty-lines, il faut imaginer que l’on a à
composer un fichier informatique qui contient une succession de définitions de fonctions informatiques.
Dans la plupart des langages informatiques, ces définitions successives sont séparées par des lignes
vides (ou plutôt des lignes blanches, c’est-à-dire des lignes qui ne contiennent que des espaces).

22

La clé split-on-empty-lines coupe le listing au niveau des lignes vides. Les lignes vides successives
sont supprimées et remplacées par le contenu du paramètre correspondant à la clé split-separation .

• Ce paramètre doit contenir du matériel à insérer en mode vertical de TeX. On peut, par exemple,
mettre la primitive TeX \hrule.

• La valeur initiale de ce paramètre est \vspace{\baselineskip}\vspace{-1.25pt}, ce qui, au
final, correspond à une ligne vide dans le pdf produit (cet espace vertical est supprimé s’il
tombe au niveau d’un saut de page).

• L’extension piton propose en fait aussi la clé add-to-split-separation qui ajoute du contenu
à droite de split-separation.

Chaque morceau du code informatique est formaté (de manière autonome) dans un environnement
dont le nom est donné par la clé env-used-by-split . La valeur initiale de ce paramètre est, sans
surprise, Piton et les différents morceaux sont donc composés dans des environnements {Piton}. Si
on décide de donner une autre valeur à la clé env-used-by-split, on doit bien sûr donner le nom
d’un environnement créé par \NewPitonEnvironment (cf. partie 3.3, p. 10).
Chaque morceau du listing de départ étant composé dans son environnement, il dispose de sa propre
numérotation des lignes (si la clé line-numbers est active) et de son propre fond coloré (si la clé
background-color est utilisée), séparé des fonds des autres morceaux. Si elle est active, la clé
splittable s’applique de manière autonome dans chaque morceau. Bien sûr, des sauts de page
peuvent intervenir entre les différents morceaux du code, quelle que soit la valeur de la clé splittable.

\begin{Piton}[split-on-empty-lines,background-color=gray!15,line-numbers]
def carré(x):
 """Calcule le carré de x"""
 return x*x

def cube(x):
 """Calcule le cube de x"""
 return x*x*x
\end{Piton}

 def carré(x):
 """Calcule le carré de x"""
 return x*x

 def cube(x):
 """Calcule le cube de x"""
 return x*x*x

Si on souhaite au contraire une continuité de numérotation, on peut ajouter \PitonOptions{resume}
au paramètre split-separation :

\begin{Piton}[
 split-on-empty-lines,
 add-to-split-separation = \PitonOptions{resume} ,
 background-color=gray!15,
 line-numbers
]
def carré(x):
 """Calcule le carré de x"""
 return x*x

def cube(x):
 """Calcule le cube de x"""
 return x*x*x
\end{Piton}

23

 def carré(x):
 """Calcule le carré de x"""
 return x*x

 def cube(x):
 """Calcule le cube de x"""
 return x*x*x

Attention : Comme chaque morceau est traité de manière indépendante, les commandes spécifiées
par detected-commands ou raw-detected-commands (cf. p. 26) et les commandes et environnements
de Beamer automatiquement détectés par piton ne doivent pas enjamber les lignes vides du listing de
départ.

6.5 Mise en évidence d’identificateurs

La commande \SetPitonIdentifier permet de changer automatiquement le formatage de certains
identificateurs en se fondant sur leur nom.
Cette commande prend trois arguments : un optionnel et deux obligatoires.

• L’argument optionnel (entre crochets) indique le langage (informatique) concerné ; si cet ar-
gument est absent, les réglages faits par \SetPitonIdentifier s’appliqueront à tous les lan-
gages.22

• Le premier argument obligatoire est une liste de noms d’identificateurs séparés par des virgules.

• Le deuxième argument obligatoire est une liste d’instructions LaTeX de formatage du même
type que pour les styles précédemment définis (cf. 3.2, p. 7).

Attention : Seuls les identificateurs peuvent voir leur formatage affecté. Les mots-clés et les noms
de fonctions prédéfinies ne seront pas affectés, même s’ils figurent dans le premier argument de
\SetPitonIdentifier.
\SetPitonIdentifier{l1,l2}{\color{red}}
\begin{Piton}
def tri(l):
 """Tri par segmentation"""
 if len(l) <= 1:
 return l
 else:
 a = l[0]
 l1 = [x for x in l[1:] if x < a]
 l2 = [x for x in l[1:] if x >= a]
 return tri(l1) + [a] + tri(l2)
\end{Piton}

def tri(l):
 """Tri par segmentation"""
 if len(l) <= 1:
 return l
 else:
 a = l[0]
 l1 = [x for x in l[1:] if x < a]
 l2 = [x for x in l[1:] if x >= a]
 return tri(l1) + [a] + tri(l2)

Avec la commande \SetPitonIdentifiers, on peut ajouter à un langage informatique de nouvelles
fonctions prédéfinies (ou de nouveaux mots-clés, etc.) qui seront détectées par piton.

22On rappelle que, dans piton, les noms des langages informatiques ne sont pas sensibles à la casse.

24

\SetPitonIdentifier[Python]
 {cos, sin, tan, floor, ceil, trunc, pow, exp, ln, factorial}
 {\PitonStyle{Name.Builtin}}

\begin{Piton}
from math import *
cos(pi/2)
factorial(5)
ceil(-2.3)
floor(5.4)
\end{Piton}

from math import *
cos(pi/2)
factorial(5)
ceil(-2.3)
floor(5.4)

6.6 Les échappements vers LaTeX

L’extension piton propose plusieurs mécanismes d’échappement vers LaTeX :

• Il est possible d’avoir des commentaires entièrement composés en LaTeX.

• Il est possible d’avoir, dans les commentaires, les éléments entre $ composés en mode mathé-
matique de LaTeX.

• Il est possible de demander à piton de détecter directement certaines commandes LaTeX avec
leur argument.

• Il est possible d’insérer du code LaTeX à n’importe quel endroit d’un listing.

Ces mécanismes vont être détaillés dans les sous-parties suivantes.
À remarquer également que, dans le cas où piton est utilisée dans la classe beamer, piton détecte la
plupart des commandes et environnements de Beamer : voir la sous-section 6.7, p. 29.

6.6.1 Les « commentaires LaTeX »

Dans ce document, on appelle « commentaire LaTeX » des commentaires qui débutent par #>. Tout
ce qui suit ces deux caractères, et jusqu’à la fin de la ligne, sera composé comme du code LaTeX
standard.
Il y a deux outils pour personnaliser ces commentaires.

• Il est possible de changer le marquage syntaxique utilisé (qui vaut initialement #>). Pour ce
faire, il existe une clé comment-latex , disponible uniquement dans le préambule du document,
qui permet de choisir les caractères qui (précédés par #) serviront de marqueur syntaxique.
Par exemple, avec le réglage suivant (fait dans le préambule du document) :
\PitonOptions{comment-latex = LaTeX}

les commentaires LaTeX commenceront par #LaTeX.
Si on donne la valeur nulle à la clé comment-latex, tous les commentaires Python (débutant
par #) seront en fait des « commentaires LaTeX ».

• Il est possible de changer le formatage du commentaire LaTeX lui-même en changeant le style
piton Comment.LaTeX.
Par exemple, avec \SetPitonStyle{Comment.LaTeX = \normalfont\color{blue}}, les com-
mentaires LaTeX seront composés en bleu.
Si on souhaite qu’un croisillon (#) soit affiché en début de commentaire dans le pdf, on peut
régler Comment.LaTeX de la manière suivante :

25

\SetPitonStyle{Comment.LaTeX = \color{gray}\#\normalfont\space }

Pour d’autres exemples de personnalisation des commentaires LaTeX, voir la partie 8.3 p. 36.

Si l’utilisateur a demandé l’affichage des numéros de ligne avec line-numbers, il est possible de faire
référence à ce numéro de ligne avec la commande \label placée dans un commentaire LaTeX.23 De
même, la commande \zlabel du paquetage zref peut être utilisée.24 La clé label-as-zlabel qui est
disponible dans \PitonOptions dans le préambule du document permet d’utiliser \label à la place
de \zlabel dans les commentaires LaTeX (ce qui est le comportement par défaut de zref en général).

6.6.2 La clé « math-comments »

Il est possible de demander que, dans les commentaires, les éléments placés entre symboles $ soient
composés en mode mathématique de LaTeX (le reste du commentaire restant composé en verbatim).
La clé math-comments (qui ne peut être activée que dans le préambule du document) active ce
comportement.

Dans l’exemple suivant, on suppose que \PitonOptions{math-comments} a été utilisé dans le pré-
ambule du document.

\begin{Piton}
def carré(x):

return x*x # renvoie x^2
\end{Piton}

def carré(x):
 return x*x # renvoie x2

6.6.3 La clé « detected-commands » et ses variantes

La clé detected-commands de \PitonOptions permet de spécifier une liste de noms de commandes
LaTeX qui seront directement détectées par piton.

• Cette clé detected-commands ne peut être utilisée que dans le préambule du document.

• Les noms de commandes LaTeX doivent apparaître sans la contre-oblique (ex. : detected-
commands = { emph , textbf }).

• Ces commandes doivent être des commandes LaTeX à un seul argument obligatoire entre acco-
lades (et ces accolades doivent apparaître explicitement dans le listing).

• Ces commandes doivent être des commandes qui s’exécutent en mode horizontal de LaTeX (à
l’intérieur d’une ligne de code).

• Ces commandes doivent être protégées25 contre le développement au sens de TeX (car la
commande \piton développe son argument avant de le passer à Lua pour analyse syntaxique).

Dans l’exemple suivant, qui est une programmation récursive en C de la factorielle, on décide de
surligner en jaune l’appel récursif. La commande \highLight de lua-ul26 permet de le faire facilement.
\PitonOptions{detected-commands = highLight} % dans le préambule

23Cette fonctionnalité est implémentée en redéfinissant, dans les environnements {Piton}, la commande \label. Il
peut donc y avoir des incompatibilités avec les extensions qui redéfinissent (globalement) cette commande \label
(comme varioref, refcheck, showlabels, etc.)

24Y compris la commande \zcref de zref-clever.
25On rappelle que, par défaut, \NewDocumentCommand crée des commandes protégées au contraire de la commande

historique \newcommand de LaTeX (et de \def de TeX).
26L’extension lua-ul requiert elle-même l’extension luacolor.

26

\begin{Piton}[language=C]
int factorielle(int n)
{
if (n > 0) \highLight{return n * factorielle(n - 1)} ;
else return 1;

}
\end{Piton}

int factorielle(int n)
 {
 if (n > 0) return n * factorielle(n - 1) ;
 else return 1;
 }

La clé raw-detected-commands est similaire à la clé detected-commands mais piton ne fera pas
d’analyse syntaxique des arguments des commandes LaTeX ainsi détectées.
S’il y a un retour à la ligne dans un argument d’une commande faisant l’objet d’un raw-detected-
commands, celui-ci sera remplacé par une espace comme le fait LaTeX par défaut.

Supposons, par exemple, que l’on souhaite, dans le texte courant d’un document traitant des bases de
données, introduire des spécifications de tables sql par le nom de la table, suivi, entre parenthèses,
par les noms de ses champs (ex. : client (non, prénom)).
Si on insère cet élément dans une commande \piton, le mot client ne va pas être reconnu comme un
nom de table mais comme un nom de champ. On peut définir une commande personnelle \NomTable
à appliquer à la main aux noms des tables. Pour cela, on la déclare avec raw-detected-commands
pour que son argument ne soit pas réanalysé par piton (cette réanalyse entraînerait son formatage
comme un nom de champ).

Dans le préambule du document LaTeX, on insère les lignes suivantes :

\NewDocumentCommand{\NomTable}{m}{{\PitonStyle{Name.Table}{#1}}}
\PitonOptions{language=SQL, raw-detected-commands = NomTable}

Dans le corps du document, l’instruction :

Exemple : \piton{\NomTable{client} (nom, prénom)}

donne alors le résultat suivant :
Exemple : client (nom, prénom)

La clé vertical-detected-commands est similaire à la clé raw-detected-commands mais les com-
mandes ainsi détectées doivent être des commandes LaTeX (à un argument) qui s’exécutent en mode
vertical entre les lignes du listing.
On peut par exemple demander la détection de \newpage par

\PitonOptions{vertical-detected-commands = newpage}

et demander dans un listing un saut de page obligatoire par \newpage{} (la paire d’accolades {} est
obligatoire car les commandes détectées par piton sont censées être des commandes LaTeX à un seul
argument obligatoire).

\begin{Piton}
def carré(x):
 return x*x \newpage{}
def cube(x):
 return x*x*x
\end{Piton}

On peut aussi envisager de demander la détection de la commande \vspace.

27

6.6.4 Le mécanisme « escape »

Il est aussi possible de surcharger les listings informatiques pour y insérer du code LaTeX à peu près
n’importe où (mais entre deux lexèmes, bien entendu). Cette fonctionnalité n’est pas activée par défaut
par piton. Pour l’utiliser, il faut spécifier les deux délimiteurs marquant l’échappement (le premier le
commençant et le deuxième le terminant) en utilisant les clés begin-escape et end-escape (qui ne
sont accessibles que dans le préambule du document). Les deux délimiteurs peuvent être identiques.

On reprend l’exemple précédent de la factorielle et on souhaite surligner en rose l’instruction qui
contient l’appel récursif. La commande \highLight de lua-ul permet de le faire avec la syntaxe
\highLight[LightPink]{...}. Du fait de la présence de l’argument optionnel entre crochets, on ne
peut pas utiliser la clé detected-commands comme précédemment mais on peut utiliser le mécanisme
« escape » qui est plus général.

\PitonOptions{begin-escape=!,end-escape=!} % dans le préambule du document LaTeX

\begin{Piton}
def fact(n):

if n==0:
return 1

else:
!\highLight[LightPink]{!return n*fact(n-1)!}!

\end{Piton}

def fact(n):
 if n==0:
 return 1
 else:
 return n*fact(n-1)

Attention : Le mécanisme « escape » n’est pas actif dans les chaînes de caractères ni dans les com-
mentaires (pour avoir un commentaire entièrement en échappement vers LaTeX, c’est-à-dire ce qui
est appelé dans ce document « commentaire LaTeX », il suffit de le faire débuter par #>).

6.6.5 Le mécanisme « escape-math »

Le mécanisme « escape-math » est très similaire au mécanisme « escape » puisque la seule différence
est que les éléments en échappement LaTeX y sont composés en mode mathématique.
On active ce mécanisme avec les clés begin-escape-math et end-escape-math (qui ne sont acces-
sibles que dans le préambule du document).

Malgré la proximité technique, les usages du mécanisme « escape-math » sont en fait assez différents
de ceux du mécanisme « escape ». En effet, comme le contenu en échappement est composé en mode
mathématique, il est, en particulier, composé dans un groupe TeX et ne pourra donc pas servir à
changer le formatage d’autres unités lexicales.

Dans les langages où le caractère $ ne joue pas un rôle syntaxique important, on peut assez naturel-
lement vouloir activer le mécanisme « escape-math » avec le caractère $:

\PitonOptions{begin-escape-math=$,end-escape-math=$}

Remarquer que le caractère $ ne doit pas être protégé par une contre-oblique.

Néanmoins, il est sans doute plus prudent d’utiliser \(et \), qui sont des délimiteurs du mode
mathématique proposés par LaTeX.

\PitonOptions{begin-escape-math=\(,end-escape-math=\)}

Voici un exemple d’utilisation typique :

28

\begin{Piton}[line-numbers]
def arctan(x,n=10):

if \(x < 0\)
return \(-\arctan(-x)\)

elif \(x > 1\) :
return \(\pi/2 - \arctan(1/x)\)

else:
s = \(0\)
for \(k\) in range(\(n\)): s += \(\smash{\frac{(-1)^k}{2k+1} x^{2k+1}}\)
return s

\end{Piton}

 def arctan(x,n=10):
 if x < 0 :
 return − arctan(−x)
 elif x > 1 :
 return π/2− arctan(1/x)
 else:
 s = 0
 for k in range(n): s += (−1)k

2k+1 x
2k+1

 return s

6.7 Comportement dans la classe Beamer

Première remarque
Remarquons que, comme l’environnement {Piton} prend son argument selon un mode verbatim,
il convient, ce qui n’est pas surprenant, de l’utiliser dans des environnements {frame} de Beamer
protégés par la clé fragile, c’est-à-dire débutant par \begin{frame}[fragile].27

Rappelons également que si le frame ne contient qu’une seule diapo (slide), il vaut mieux écrire :
\begin{frame}[fragile=singleslide]

Quand l’extension piton est utilisée dans la classe beamer28, le comportement de piton est légèrement
modifié, comme décrit maintenant.

6.7.1 {Piton} et \PitonInputFile sont “overlay-aware”

Quand piton est utilisé avec Beamer, la command \PitonInputFile et l’environnement {Piton} (mais
pas les environnements créés par \NewPitonEnvironment) acceptent l’argument optionnel <...> de
Beamer pour indiquer les « overlays » concernés. Cela est fait via un environnement {actionenv} de
Beamer.
On peut par exemple écrire :

\begin{Piton}<2-5>
...
\end{Piton}

ou aussi

\PitonInputFile<2-5>{mon_fichier.py}

27On rappelle que pour un environnement {frame} de Beamer qui utilise la clé fragile, l’instruction \end{frame}
doit être seule sur une ligne (à l’exception d’éventuels espaces en début de ligne).

28L’extension piton détecte la classe beamer et l’extension beamerarticle si elle est chargée précédemment, mais il est
aussi possible, si le besoin s’en faisait sentir, d’activer ce comportement avec la clé beamer au chargement de piton :
\usepackage[beamer]{piton}

29

6.7.2 Commandes de Beamer reconnues dans {Piton} et \PitonInputFile

Quand piton est utilisé dans la classe beamer, les commandes suivantes de beamer (classées selon leur
nombre d’arguments obligatoires) sont directement reconnues dans les environnements {Piton} (ainsi
que dans les listings composés par la commande \PitonInputFile, même si c’est sans doute moins
utile).

• aucun argument obligatoire : \pause29 ;

• un argument obligatoire : \action, \alert, \invisible, \only, \uncover et \visible ;
La clé detected-beamer-commands permet de rajouter à cette liste de nouveaux noms de
commandes (les noms de commandes ne doivent pas être précédés de la contre-oblique) ;

• deux arguments obligatoires : \alt ;

• trois arguments obligatoires : \temporal.

Ces commandes doivent être utilisées précédées et suivies d’un espace. Les accolades dans les argu-
ments obligatoires de ces commandes doivent être équilibrées (cependant, les accolades présentes dans
des chaînes courtes30 de Python ne sont pas prises en compte).

Concernant les fonctions \alt et \temporal, aucun retour à la ligne ne doit se trouver dans les
arguments de ces fonctions.

Voici un exemple complet de fichier :
\documentclass{beamer}
\usepackage{piton}
\begin{document}
\begin{frame}[fragile]
\begin{Piton}
def string_of_list(l):
 """Convertit une liste de nombres en chaîne"""
 \only<2->{s = "{" + str(l[0])}
 \only<3->{for x in l[1:]: s = s + "," + str(x)}
 \only<4->{s = s + "}"}
 return s
\end{Piton}
\end{frame}
\end{document}

Dans cet exemple, les accolades des deux chaînes de caractères Python "{" et "}" sont correctement
interprétées (sans aucun caractère d’échappement).

6.7.3 Environnements de Beamer reconnus dans {Piton} et \PitonInputFile

Quand piton est utilisé dans la classe beamer, les environnements suivants de Beamer sont direc-
tement reconnus dans les environnements {Piton} (ainsi que dans les listings composés par la
commande \PitonInputFile même si c’est sans doute moins utile) : {actionenv}, {alertenv},
{invisibleenv}, {onlyenv}, {uncoverenv} et {visibleenv}.
On peut ajouter de nouveaux environnements à cette liste d’environnements reconnus avec la clé
detected-beamer-environments .

Il y a néanmoins une restriction : ces environnements doivent englober des lignes entières de code.
Les instructions \begin{...} et \end{...} doivent être seules sur leurs lignes.

On peut par exemple écrire :

29On remarquera que, bien sûr, on peut aussi utiliser \pause dans un « commentaire LaTeX», c’est-à-dire en écrivant
#> \pause. Ainsi, si le code Python est copié, il est interprétable par Python.

30Les chaînes courtes de Python sont les chaînes (string) délimitées par les caractères ' ou " non triplés. En Python,
les chaînes de caractères courtes ne peuvent pas s’étendre sur plusieurs lignes de code.

30

\documentclass{beamer}
\usepackage{piton}
\begin{document}
\begin{frame}[fragile]
\begin{Piton}
def carré(x):
 """Calcule le carré de l'argument"""
\begin{uncoverenv}<2>
 return x*x
\end{uncoverenv}
\end{Piton}
\end{frame}
\end{document}

Remarque à propos de la commande \alert et de l’environnement {alertenv} de Beamer
Beamer propose un moyen aisé de changer la couleur utilisée par l’environnement {alertenv} (et
par suite la commande \alert qui s’appuie dessus). Par exemple, on peut écrire :

\setbeamercolor{alerted text}{fg=blue}

Néanmoins, dans le cas d’une utilisation à l’intérieur d’un environnement {Piton} un tel réglage
n’est sans doute pas pertinent, puisque, justement, piton va (le plus souvent) changer la couleur des
élements selon leur valeur lexicale. On préfèrera sans doute un environnement {alertenv} qui change
la couleur de fond des éléments à mettre en évidence.
Voici un code qui effectuera ce travail en mettant un fond jaune. Ce code utilise la commande
\@highLight de l’extension lua-ul (cette extension nécessite elle-même l’extension luacolor).

\setbeamercolor{alerted text}{bg=yellow!50}
\makeatletter
\AddToHook{env/Piton/begin}
{\renewenvironment<>{alertenv}{\only#1{\@highLight[alerted text.bg]}}{}}

\makeatother

Ce code redéfinit localement l’environnement {alertenv} à l’intérieur de l’environnement {Piton}
(on rappelle que la commande \alert s’appuie sur cet environnement {alertenv}).

6.8 Notes de pied de page dans les environnements de piton

Si vous voulez mettre des notes de pied de page dans un environnement de piton (ou bien dans un
listing produit par \PitonInputFile, bien que cela paraisse moins pertinent dans ce cas-là) vous
pouvez utiliser une paire \footnotemark–\footnotetext.
Néanmoins, il est également possible d’extraire les notes de pieds de page avec l’extension footnote
ou bien l’extension footnotehyper.
Si piton est chargée avec l’option footnote (avec \usepackage[footnote]{piton}) l’extension foot-
note est chargée (si elle ne l’est pas déjà) et elle est utilisée pour extraire les notes de pied de page.
Si piton est chargée avec l’option footnotehyper , l’extension footnotehyper est chargée (si elle ne
l’est pas déjà) et elle est utilisée pour extraire les notes de pied de page.
Attention : Les extensions footnote et footnotehyper sont incompatibles. L’extension footnotehyper est
le successeur de l’extension footnote et devrait être utilisée préférentiellement. L’extension footnote
a quelques défauts ; en particulier, elle doit être chargée après l’extension xcolor et elle n’est pas
parfaitement compatible avec hyperref.

Remarque importante : Si vous utilisez Beamer, il faut savoir que Beamer a son propre système
d’extraction des notes de pied de page et vous n’avez donc pas à charger piton avec la clé footnote
ou bien la clé footnotehyper.

31

Par défaut, une commande \footnote ne peut apparaître que dans un « commentaire LaTeX ». Mais
on peut aussi ajouter la commande \footnote à la liste des detected-commands (cf. partie 6.6.3,
p. 26).

Dans ce document, l’extension piton a été chargée avec l’option footnotehyper et on rajouté la
commande \footnote aux detected-commands avec le code suivant dans le préambule du document
LaTeX :

\PitonOptions{detected-commands = footnote}

\PitonOptions{background-color=gray!15}
\begin{Piton}
def arctan(x,n=10):

if x < 0:
return -arctan(-x)\footnote{Un premier appel récursif.}

elif x > 1:
return pi/2 - arctan(1/x)\footnote{Un deuxième appel récursif.}

else:
return sum((-1)**k/(2*k+1)*x**(2*k+1) for k in range(n))

\end{Piton}

def arctan(x,n=10):
 if x < 0:
 return -arctan(-x)31

 elif x > 1:
 return pi/2 - arctan(1/x)32

 else:
 return sum((-1)**k/(2*k+1)*x**(2*k+1) for k in range(n))

Si on utilise l’environnement {Piton} dans un environnement {minipage} de LaTeX, les notes sont,
bien entendu, composées au bas de l’environnement {minipage}. Rappelons qu’une telle {minipage}
ne peut pas être coupée par un saut de page.

\PitonOptions{background-color=gray!15}
\begin{minipage}{\linewidth}
\begin{Piton}
def arctan(x,n=10):

if x < 0:
return -arctan(-x)\footnote{Un premier appel récursif.}

elif x > 1:
return pi/2 - arctan(1/x)\footnote{Un deuxième appel récursif.}

else:
return sum((-1)**k/(2*k+1)*x**(2*k+1) for k in range(n))

\end{Piton}
\end{minipage}

def arctan(x,n=10):
 if x < 0:
 return -arctan(-x)a

 elif x > 1:
 return pi/2 - arctan(1/x)b

 else:
 return sum((-1)**k/(2*k+1)*x**(2*k+1) for k in range(n))

aUn premier appel récursif.
bUn deuxième appel récursif.

31Un premier appel récursif.
32Un deuxième appel récursif.

32

6.9 Tabulations

Même s’il est sans doute recommandable d’indenter les listings informatiques avec des espaces et non
des tabulations33, piton accepte les caractères de tabulations (U+0009) en début de ligne. Chaque
caractère U+0009 est remplacé par n espaces. La valeur initiale de n est 4 mais on peut la changer
avec la clé tab-size de \PitonOptions.
Il existe aussi une clé tabs-auto-gobble qui détermine le nombre minimal de caractères U+0009
débutant chaque ligne (non vide) de l’environnement {Piton} et applique gobble avec cette valeur
(avant le remplacement des caractères U+0009 par des espaces, bien entendu). Cette clé est donc
similaire à la clé auto-gobble mais agit sur des caractères U+0009 au lieu de caractères U+0020
(espaces).
La clé env-gobble n’est pas compatible avec les tabulations.

7 API pour les développeurs

La variable L3 \l_piton_language_str contient le nom du langage courant (en minuscules).

L’extension piton fournit une fonction Lua piton.get_last_code sans argument permettant de
récupérer le code contenu dans le dernier environnement de piton.

• Les retours à la ligne (présents dans l’environnement de départ) apparaissent comme des carac-
tères \r (c’est-à-dire des caractères U+000D).

• Le code fourni par piton.get_last_code() tient compte de l’éventuelle application d’une clé
gobble (cf. p. 4).

• Les surcharges du code (qui entraînent des échappements vers LaTeX) ont été retirées du code
fourni par piton.get_last_code(). Cela s’applique aux commandes LaTeX déclarées par la clé
detected-commands et ses variantess (cf. partie 6.6.3) et aux éléments insérés avec le mécanisme
« escape» (cf. partie 6.6.4).

• piton.get_last_code est une fonction Lua et non une chaîne de caractères : les traitements
présentés précédemment sont exécutés lorsque la fonction est appelée. De ce fait, il peut être
judicieux de stocker la valeur renvoyée par piton.get_last_code() dans une variable Lua si
on doit l’utiliser plusieurs fois.

Pour un exemple d’utilisation, voir la partie concernant l’utilisation (standard) de pyluatex, par-
tie 8.6.1, p. 42.

8 Exemples

8.1 Un exemple de réglage des styles

Les styles graphiques ont été présentés à la partie 3.2, p. 7.
On présente ici un réglage de ces styles adapté pour les documents en noir et blanc.
Ce réglage utilise la commande \highLight de lua-ul (cette extension nécessite elle-même l’extension
luacolor).

\SetPitonStyle
{
Number = ,

33Voir, par exemple, pour le langage Python, la note PEP 8.

33

String = \itshape ,
String.Doc = \color{gray} \itshape ,
Operator = ,
Operator.Word = \bfseries ,
Name.Builtin = ,
Name.Function = \bfseries \highLight[gray!20] ,
Comment = \color{gray} ,
Comment.LaTeX = \normalfont \color{gray},
Keyword = \bfseries ,
Name.Namespace = ,
Name.Class = ,
Name.Type = ,
InitialValues = \color{gray}

}

Dans ce réglage, de nombreuses valeurs fournies aux clés sont vides, ce qui signifie que le style
correspondant n’insèrera aucune instruction de formatage, si ce n’est celles données par le paramètre
font-command, dont la valeur initiale est \ttfamily (l’élément sera composé dans la couleur standard,
le plus souvent, en noir, etc.). Ces entrées avec valeurs nulles sont néanmoins nécessaires car la valeur
initiale de ces styles dans piton n’est pas vide.

from math import pi

def arctan(x,n=10):
 """Compute the mathematical value of arctan(x)

 n is the number of terms in the sum
 """
 if x < 0:
 return -arctan(-x) # appel récursif
 elif x > 1:
 return pi/2 - arctan(1/x)
 (on a utilisé le fait que arctan(x) + arctan(1/x) = π/2 pour x > 0)
 else:
 s = 0
 for k in range(n):
 s += (-1)**k/(2*k+1)*x**(2*k+1)
 return s

8.2 Numérotation des lignes

On rappelle que l’on peut demander la numérotation des lignes des listings avec la clé line-numbers
(utilisée sans valeur).
Par défaut, les numéros de ligne sont composés par piton en débordement à gauche (en utilisant en
interne la commande \llap de LaTeX).

\PitonOptions{background-color=gray!15, line-numbers}
\begin{Piton}
def arctan(x,n=10):

if x < 0:
return -arctan(-x) #> (appel récursif)

elif x > 1:
return pi/2 - arctan(1/x) #> (autre appel récursif)

else:
s = 0.0
for k in range(n):

s = s + (-1)**k/(2*k+1)*x**(2*k+1)
return s

\end{Piton}

34

 def arctan(x,n=10):
 if x < 0:
 return -arctan(-x) (appel récursif)
 elif x > 1:
 return pi/2 - arctan(1/x) (autre appel récursif)
 else:
 s = 0.0
 for k in range(n):
 s = s + (-1)**k/(2*k+1)*x**(2*k+1)
 return s

Si on ne veut pas de débordement, on peut utiliser l’option left-margin=auto qui va insérer une
marge adaptée aux numéros qui seront insérés (elle est plus large quand les numéros dépassent 10).

\PitonOptions{background-color=gray!15, left-margin = auto, line-numbers}
\begin{Piton}
def arctan(x,n=10):

if x < 0:
return -arctan(-x) #> (appel récursif)

elif x > 1:
return pi/2 - arctan(1/x) #> (autre appel récursif)

else:
s = 0.0
for k in range(n):

s = s + (-1)**k/(2*k+1)*x**(2*k+1)
return s

\end{Piton}

 def arctan(x,n=10):
 if x < 0:
 return -arctan(-x) (appel récursif)
 elif x > 1:
 return pi/2 - arctan(1/x) (autre appel récursif)
 else:
 s = 0.0
 for k in range(n):
 s = s + (-1)**k/(2*k+1)*x**(2*k+1)

 return s

On peut aussi demander la composition des numéros à droite avec line-numbers/position=right
(la valeur initiale du paramètre line-numbers/position est, sans surprise, left). Il est bon dans ce
cas de donner une valeur non nulle à right-margin (on peut aussi utiliser right-margin=auto mais
la valeur effective résultante pour right-margin paraîtra dans doute trop faible en cas de longues
lignes coupées).

\PitonOptions
{
background-color=gray!15,
line-numbers/position = right,
right-margin = 1cm,
line-numbers

}
\begin{Piton}
def arctan(x,n=10):

if x < 0:
return -arctan(-x) #> (appel récursif)

elif x > 1:
return pi/2 - arctan(1/x) #> (autre appel récursif)

else:
s = 0.0
for k in range(n):

s = s + (-1)**k/(2*k+1)*x**(2*k+1)

35

return s
\end{Piton}

 def arctan(x,n=10):
 if x < 0:
 return -arctan(-x) (appel récursif)
 elif x > 1:
 return pi/2 - arctan(1/x) (autre appel récursif)
 else:
 s = 0.0
 for k in range(n):
 s = s + (-1)**k/(2*k+1)*x**(2*k+1)
 return s

Le même exemple avec la clé width=min.

\PitonOptions
{
background-color=gray!15,
line-numbers/position = right,
right-margin = 1cm,
line-numbers,
width=min

}
\begin{Piton}
def arctan(x,n=10):

if x < 0:
return -arctan(-x) #> (appel récursif)

elif x > 1:
return pi/2 - arctan(1/x) #> (autre appel récursif)

else:
s = 0.0
for k in range(n):

s = s + (-1)**k/(2*k+1)*x**(2*k+1)
return s

\end{Piton}

 def arctan(x,n=10):
 if x < 0:
 return -arctan(-x) (appel récursif)
 elif x > 1:
 return pi/2 - arctan(1/x) (autre appel récursif)
 else:
 s = 0.0
 for k in range(n):
 s = s + (-1)**k/(2*k+1)*x**(2*k+1)
 return s

8.3 Formatage des commentaires LaTeX

On peut modifier le style Comment.LaTeX (avec \SetPitonStyle) pour faire afficher les commentaires
LaTeX (qui débutent par #>) en butée à droite.

\PitonOptions{background-color=gray!15}
\SetPitonStyle{Comment.LaTeX = \hfill \normalfont\color{gray}}
\begin{Piton}
def arctan(x,n=10):

if x < 0:
return -arctan(-x) #> appel récursif

elif x > 1:

36

return pi/2 - arctan(1/x) #> autre appel récursif
else:

return sum((-1)**k/(2*k+1)*x**(2*k+1) for k in range(n))
\end{Piton}

def arctan(x,n=10):
 if x < 0:
 return -arctan(-x) appel récursif
 elif x > 1:
 return pi/2 - arctan(1/x) autre appel récursif
 else:
 return sum((-1)**k/(2*k+1)*x**(2*k+1) for k in range(n))

On peut aussi faire afficher les commentaires dans une deuxième colonne à droite si on limite la
largeur du code proprement dit avec la clé width.

\PitonOptions{width=9cm, background-color=gray!15}
\NewDocumentCommand{\MyLaTeXCommand}{m}{\hfill \normalfont\itshape\rlap{\quad #1}}
\SetPitonStyle{Comment.LaTeX = \MyLaTeXCommand}
\begin{Piton}
def arctan(x,n=10):

if x < 0:
return -arctan(-x) #> appel récursif

elif x > 1:
return pi/2 - arctan(1/x) #> autre appel récursif

else:
s = 0
for k in range(n):

s += (-1)**k/(2*k+1)*x**(2*k+1)
return s

\end{Piton}

def arctan(x,n=10):
 if x < 0:
 return -arctan(-x) appel récursif
 elif x > 1:
 return pi/2 - arctan(1/x) autre appel récursif
 else:
 s = 0
 for k in range(n):
 s += (-1)**k/(2*k+1)*x**(2*k+1)
 return s

8.4 La commande \rowcolor

La commande \rowcolor a été décrite à la partie 3.2.3, p. 8, dans la partie sur les styles. Rappelons
qu’elle impose un fond coloré à la ligne courante (toute la ligne et pas seulement la partie contenant
du texte).

Cette commande \rowcolor peut être utilisée dans un style, comme illustré à la page 8 mais on peut
aussi envisager de l’utiliser directement dans un listing. Il faudra néanmoins utiliser un des mécanismes
d’échappement vers LaTeX fournis par piton. Dans l’exemple suivant, on utilise la clé raw-detected-
commands (cf. p. 26). On ne pourra pas utiliser une syntaxe comme \rowcolor[rgb]{0.8,1,0.8}
car les « commandes détectées » sont des commandes à un seul argument mais on pourra utiliser
\rowcolor{[rgb]{0.8,1,0.8}} (syntaxe acceptée par \rowcolor).
\PitonOptions{raw-detected-commands = rowcolor} % dans le préambule

37

\begin{Piton}[width=min]
def fact(n):

if n==0:
return 1 \rowcolor{yellow!50}

else:
return n*fact(n-1)

\end{Piton}

def fact(n):
 if n==0:
 return 1
 else:
 return n*fact(n-1)

Voici maintenant le même exemple avec utilisation conjointe de la clé background-color (cf. p. 5).
\begin{Piton}[width=min,background-color=gray!15]
def fact(n):

if n==0:
return 1 \rowcolor{yellow!50}

else:
return n*fact(n-1)

\end{Piton}

def fact(n):
 if n==0:
 return 1
 else:
 return n*fact(n-1)

Comme on le constate, une marge a été ajoutée à gauche et à droite par la clé background-color.
Pour avoir une telle marge sans couleur de fond générale, il convient d’utiliser background-color
avec la couleur spéciale none.
\begin{Piton}[width=min,background-color=none]
def fact(n):

if n==0:
return 1 \rowcolor{yellow!50}

else:
return n*fact(n-1)

\end{Piton}

def fact(n):
 if n==0:
 return 1
 else:
 return n*fact(n-1)

8.5 Utilisation avec tcolorbox

La clé tcolorbox de piton a été présentée à la page 16.
Si on souhaite l’utiliser en paramétrant la boîte graphique créée par tcolorbox (avec les clés fournies
par tcolorbox), il convient d’utiliser la commande \tcbset de tcolorbox. Pour limiter la portée de
ces réglages, le mieux est sans doute de créer un nouvel environnement avec \NewPitonEnvironment
(cf. p. 10). Cet environnement contiendra les personnalisations de piton (avec \PitonOptions) et
celles de tcolorbox (avec \tcbset).

Voici un exemple d’un tel environnement {Python} avec une colonne colorée à gauche pour les numéros
de ligne.
\usepackage{tcolorbox} % dans le préambule
\tcbuselibrary{breakable,skins} % dans le préambule

\NewPitonEnvironment{Python}{m}
{%
\PitonOptions
{
tcolorbox,
splittable=3,
width=min,
line-numbers, % active les numéros de ligne
line-numbers = % personnalisation des numéros de ligne
{
format = \footnotesize\color{white}\sffamily ,
sep = 2.5mm

}
}%

\tcbset
{

38

enhanced,
title=#1,
fonttitle=\sffamily,
left = 6mm,
top = 0mm,
bottom = 0mm,
overlay=
{%

\begin{tcbclipinterior}%
\fill[gray!80]

(frame.south west) rectangle
([xshift=6mm]frame.north west);

\end{tcbclipinterior}%
}

}
}
{ }

Dans l’exemple d’utilisation qui suit, on a illustré le fait que l’on peut forcer un saut de page dans
un tel environnement avec \newpage{} si on a demandé à piton de détecter la commande \newpage
avec la clé vertical-detected-commands (cf. p. 26) dans le préambule du document LaTeX.
Remarquer que l’on doit bien utiliser \newpage{} et non \newpage car les commandes LaTeX détec-
tées par piton sont censées être des commandes à un argument entre accolades (les accolades doivent
être explicites).
\PitonOptions{vertical-detected-commands = newpage} % dans le préambule

\begin{Python}{Mon exemple}
def carré(x):

"""Calcule le carré de x"""
return x*x

def carré(x):
"""Calcule le carré de x"""
return x*x

def carré(x):
"""Calcule le carré de x"""
return x*x

def carré(x):
"""Calcule le carré de x"""
return x*x \newpage{}

def carré(x):
"""Calcule le carré de x"""
return x*x

...
def carré(x):

"""Calcule le carré de x"""
return x*x

\end{Python}

Mon exemple

 def carré(x):
 """Calcule le carré de x"""
 return x*x
 def carré(x):
 """Calcule le carré de x"""
 return x*x
 def carré(x):

39

 """Calcule le carré de x"""
 return x*x

 def carré(x):
 """Calcule le carré de x"""
 return x*x

40

 def carré(x):
 """Calcule le carré de x"""
 return x*x
 def carré(x):
 """Calcule le carré de x"""
 return x*x
 def carré(x):
 """Calcule le carré de x"""
 return x*x
 def carré(x):
 """Calcule le carré de x"""
 return x*x
 def carré(x):
 """Calcule le carré de x"""
 return x*x
 def carré(x):
 """Calcule le carré de x"""
 return x*x
 def carré(x):
 """Calcule le carré de x"""
 return x*x
 def carré(x):
 """Calcule le carré de x"""
 return x*x
 def carré(x):
 """Calcule le carré de x"""
 return x*x
 def carré(x):
 """Calcule le carré de x"""
 return x*x
 def carré(x):
 """Calcule le carré de x"""
 return x*x
 def carré(x):
 """Calcule le carré de x"""
 return x*x
 def carré(x):
 """Calcule le carré de x"""
 return x*x
 def carré(x):
 """Calcule le carré de x"""
 return x*x
 def carré(x):
 """Calcule le carré de x"""
 return x*x
 def carré(x):
 """Calcule le carré de x"""
 return x*x
 def carré(x):
 """Calcule le carré de x"""
 return x*x
 def carré(x):
 """Calcule le carré de x"""
 return x*x
 def carré(x):
 """Calcule le carré de x"""
 return x*x

41

 def carré(x):
 """Calcule le carré de x"""
 return x*x
 def carré(x):
 """Calcule le carré de x"""
 return x*x
 def carré(x):
 """Calcule le carré de x"""
 return x*x
 def carré(x):
 """Calcule le carré de x"""
 return x*x

8.6 Utilisation avec pyluatex

8.6.1 Utilisation standard de pyluatex

L’extension pyluatex est une extension qui permet l’exécution de code Python à partir de lualatex
(pourvu que Python soit installé sur la machine et que la compilation soit effectuée avec lualatex
et --shell-escape).
Voici, à titre d’exemple, un environnement {PitonExecute} qui formate un listing Python (avec
piton) et qui affiche également dessous le résultat de l’exécution de ce code avec Python.
\NewPitonEnvironment{PitonExecute}{O{}}
 {\PitonOptions{#1}}
 {\begin{center}
 \directlua{pyluatex.execute(piton.get_last_code(), false, true, false, true)}%
 \end{center}}

On a utilisé la fonction Lua piton.get_last_code fournie dans l’API de piton : cf. partie 7, p. 33.

Cet environnement {PitonExecute} prend en argument optionnel (entre crochets) les options pro-
posées par la commande \PitonOptions.

\begin{PitonExecute}[background-color=gray!15]
def carré(x):

"""Calcule le carré de x"""
return x*x

print(f'Le carré de 12 est {carré(12)}.')
\end{PitonExecute}

def carré(x):
 """Calcule le carré de x"""
 return x*x
print(f'Le carré de 12 est {carré(12)}.')

Le carré de 12 est 144.

On peut, dans cet environnement, utiliser les mécanismes d’échappement vers LaTeX de la même
manière que précédemment (cf. p. 25).
\usepackage{luacolor,lua-ul} % dans le préambule
\PitonOptions{detected-commands = highLight} % dans le préambule

\begin{PitonExecute}[background-color=gray!15]
def carré(x):

"""Calcule le carré de x"""
\highLight{return x*x}

print(f'Le carré de 12 est {carré(12)}.')
\end{PitonExecute}

42

def carré(x):
 """Calcule le carré de x"""
 return x*x
print(f'Le carré de 12 est {carré(12)}.')

Le carré de 12 est 144.

8.6.2 Utilisation de l’environnement {pythonrepl} de pyluatex

L’environnement {pythonrepl} de pyluatex passe son contenu à Python et renvoie ce que l’on obtient
quand on fournit ce code à une boucle repl (read-eval-print loop) de Python. On obtient un entre-
lacement d’instructions précédées par le prompt >>> de Python et des valeurs renvoyées par Python
(et de ce qui a été demandé d’être affiché avec des print de Python).

Il est ensuite possible de passer cela à un environnement {Piton} qui va faire un coloriage syntaxique
et mettre sur fond grisé les lignes correspondant aux instructions fournies à l’interpréteur Python
(la couleur de ce fond est réglable avec la clé prompt-background-color dont la valuer initiale est
gray!15).

Voici la programmation d’un environnement {PitonREPL} qui effectue ce travail (pour des raisons
techniques, le ! est ici obligatoire dans la signature de l’environnement). On ne peut pas procéder
comme précédemment (dans l’utilisation « standard » de pyluatex) car, bien sûr, c’est le retour fait
par {pythonrepl} qui doit être traité par piton. De ce fait, il ne sera pas possible de mettre des
surcharges (avec detected-commands, begin-escape, etc.) dans le code.

\ExplSyntaxOn
\NewDocumentEnvironment { PitonREPL } { ! O { } } % le ! est obligatoire
{
\PitonOptions

{
prompt-background-color=blue!15 ,
background-color=none, % pour avoir des petites marges
#1

}
\PyLTVerbatimEnv
\begin{pythonrepl}

}
{
\end{pythonrepl}
\lua_now:n

{
tex.print("\\begin{Piton}")
tex.print(pyluatex.get_last_output())
tex.print("\\end{Piton}")
tex.print("")

}
\ignorespacesafterend

}
\ExplSyntaxOff

Voici un exemple d’utilisation de ce nouvel environnement {PitonREPL}.

\begin{PitonREPL}
 def valeur_absolue(x):
 """Renvoie la valeur absolue de x"""
 if x > 0:
 return x
 else:
 return -x

43

 valeur_absolue(-3)
 valeur_absolue(0)
 valeur_absolue(5)
\end{PitonREPL}

>>> def valeur_absolue(x):
... """Renvoie la valeur absolue de x"""
... if x > 0:
... return x
... else:
... return -x
...
>>> valeur_absolue(-3)
3
>>> valeur_absolue(0)
0
>>> valeur_absolue(5)
5

En fait, il est possible de ne pas faire afficher les prompts eux-mêmes (c’est-à-dire les chaînes de
caractères >>> et ...). En effet, piton propose un style pour ces éléments, qui est appelé Prompt.
La valeur initial de ce style est vide, ce qui fait qu’aucune action n’est exécutée sur ces éléments qui
sont donc affichés tels quels. En fournissant comme valeur une fonction qui se contente de gober son
argument, on peut demander à ce qu’ils ne soient pas affichés.

\NewDocumentCommand{\Gobe}{m}{}34

\SetPitonStyle{ Prompt = \Gobe }

L’exemple précédent donne alors :

\begin{PitonREPL}
 def valeur_absolue(x):
 """Renvoie la valeur absolue de x"""
 if x > 0:
 return x
 else:
 return -x

 valeur_absolue(-3)
 valeur_absolue(0)
 valeur_absolue(5)
\end{PitonREPL}

def valeur_absolue(x):
"""Renvoie la valeur absolue de x"""
if x > 0:

return x
else:

return -x

valeur_absolue(-3)
3

34On a défini ici une fonction \Gobe mais, en fait, elle existe déjà en L3 sous le nom \use_none:n.

44

valeur_absolue(0)
0
valeur_absolue(5)
5

45

9 Les styles pour les différents langages informatiques

9.1 Le langage Python

Le langage par défaut de l’extension piton est Python. Si besoin est, on peut revenir au langage
Python avec \PitonOptions{language=Python}.

Les réglages initiaux effectués par piton dans piton.sty sont inspirés par le style manni de Pygments
tel qu’il est appliqué au langage Python par Pygments.35

Style Usage
Number les nombres
String.Short les chaînes de caractères courtes (entre ' ou ")
String.Long les chaînes de caractères longues (entre ''' ou """) sauf les chaînes de

documentation (qui sont gérées par String.Doc)
String cette clé fixe à la fois String.Short et String.Long
String.Doc les chaînes de documentation (seulement entre """ suivant PEP 257)
String.Interpol les éléments syntaxiques des champs des f-strings (c’est-à-dire les caractères {

et }) ; ce style hérite des styles String.Short et String.Long (suivant la
chaîne où apparaît l’interpolation)

Interpol.Inside le contenu des interpolations dans les f-strings (c’est-à-dire les éléments qui se
trouvent entre { et }) ; si l’utilisateur n’a pas fixé ce style, ces éléments sont
analysés et formatés par piton au même titre que le reste du code.

Operator les opérateurs suivants : != == << >> - ~ + / * % = < > & . | @
Operator.Word les opérateurs suivants : in, is, and, or et not
Name.Builtin la plupart des fonctions prédéfinies par Python
Name.Decorator les décorateurs (instructions débutant par @)
Name.Namespace le nom des modules (= bibliothèques extérieures)
Name.Class le nom des classes au moment de leur définition, c’est-à-dire après le mot-clé

class
Name.Function le nom des fonctions définies par l’utilisateur au moment de leur définition

(après le mot-clé def)
UserFunction le nom des fonctions précédemment définies par l’utilisateur (la valeur initiale

de ce paramètre est \PitonStyle{Identifier}, ce qui fait que ces noms de
fonctions sont affichés comme les identifiants)

Exception les exceptions prédéfinies (ex. : SyntaxError)
InitialValues les valeurs initiales (et le symbole = qui précède) des arguments optionnels

dans les définitions de fonctions ; si l’utilisateur n’a pas fixé ce style, ces
éléments sont analysés et formatés par piton au même titre que le reste du
code.

Comment les commentaires commençant par #
Comment.LaTeX les commentaires commençant par #> qui sont composés par piton comme du

code LaTeX (et appelés simplement « commentaires LaTeX » dans ce
document)

Keyword.Constant True, False et None
Keyword les mots-clés suivants : assert, break, case, continue, del, elif,

else, except, exec, finally, for, from, global, if, import, in,
lambda, non local, pass, raise, return, try, while, with, yield
et yield from.

Identifier les identificateurs.

35Voir https://pygments.org/styles/. À remarquer que, par défaut, Pygments propose pour le style manni un
fond coloré dont la couleur est la couleur HTML #F0F3F3. Il est possible d’avoir la même couleur dans {Piton} avec
l’instruction : \PitonOptions{background-color = [HTML]{F0F3F3}}

46

https://pygments.org/styles/

9.2 Le langage OCaml

On peut basculer vers le langage OCaml avec la clé language : language = OCaml

Style Usage
Number les nombres
String.Short les caractères (entre ')
String.Long les chaînes de caractères, entre " mais aussi les quoted-strings
String cette clé fixe à la fois String.Short et String.Long
Operator les opérateurs, en particulier +, -, /, *, @, !=, ==, &&
Operator.Word les opérateurs suivants : asr, land, lor, lsl, lxor, mod et or
Name.Builtin les fonctions not, incr, decr, fst et snd
Name.Type le nom des types OCaml
Name.Field le nom d’un champ de module
Name.Constructor le nom des constructeurs de types (qui débutent par une

majuscule)
Name.Module le nom des modules
Name.Function le nom des fonctions définies par l’utilisateur au moment de leur

définition (après le mot-clé let)
UserFunction le nom des fonctions précédemment définies par l’utilisateur (la

valeur initiale de ce paramètre est \PitonStyle{Identifier}, ce
qui fait que ces noms de fonctions sont affichés comme les
identifiants)

Exception les exceptions prédéfinies (ex. : End_of_File)
TypeParameter les paramétreurs de type
Comment les commentaires, entre (* et *) ; ces commentaires peuvent être

imbriqués
Keyword.Constant true et false
Keyword les mots-clés suivants : assert, as, done, downto, do, else,

exception, for, function , fun, if, lazy, match, mutable, new,
of, private, raise, then, to, try , virtual, when, while et with

Keyword.Governing les mot-clés suivants : and, begin, class, constraint, end,
external, functor, include, inherit, initializer, in, let,
method, module, object, open, rec, sig, struct, type et val.

Identifier les identificateurs.

Voici un exemple :

let rec quick_sort lst = (* Tri par segmentation *)
 match lst with
 | [] -> []
 | pivot :: rest ->
 let left = List.filter (fun x -> x < pivot) rest in
 let right = List.filter (fun x -> x >= pivot) rest in
 quick_sort left @ [pivot] @ quick_sort right

47

9.3 Le langage C (et C++)

On peut basculer vers le langage C avec la clé language : language = C

Style Usage
Number les nombres
String.Short les caractères (entre ')
String.Long les chaînes de caractères (entre ")
String.Interpol les éléments %d, %i, %f, %c, etc. dans les chaînes de caractères ; ce

style hérite du style String.Long
Operator les opérateurs suivants : != == << >> - ~ + / * % = < > & . | @
Name.Type les types prédéfinis suivants : bool, char, char16_t, char32_t,

double, float, int, int8_t, int16_t, int32_t, int64_t, long,
short, signed, unsigned, void et wchar_t

Name.Builtin les fonctions prédéfinies suivantes : printf, scanf, malloc, sizeof
et alignof

Name.Class le nom des classes au moment de leur définition, c’est-à-dire après le
mot-clé class

Name.Function le nom des fonctions définies par l’utilisateur au moment de leur
définition

UserFunction le nom des fonctions précédemment définies par l’utilisateur (la
valeur initiale de ce paramètre est \PitonStyle{Identifier}, ce
qui fait que ces noms de fonctions sont affichés comme les
identifiants)

Preproc les instructions du préprocesseur (commençant par #)
Comment les commentaires (commençant par // ou entre /* et */)
Comment.LaTeX les commentaires commençant par //> qui sont composés par piton

comme du code LaTeX (et appelés simplement « commentaires
LaTeX » dans ce document)

Keyword.Constant default, false, NULL, nullptr et true
Keyword les mots-clés suivants : alignas, asm, auto, break, case, catch,

class, constexpr, const, continue, decltype, do, else, enum,
extern, for, goto, if, nexcept, private, public, register,
restricted, try, return, static, static_assert, struct,
switch, thread_local, throw, typedef, union, using, virtual,
volatile et while

Identifier les identificateurs.

48

9.4 Le langage SQL

On peut basculer vers le langage SQL avec la clé language : language = SQL

Style Usage
Number les nombres
String.Long les chaînes de caractères (entre ' et non entre " car les éléments entre "

sont des noms de champs et formatés avec Name.Field)
Operator les opérateurs suivants : = != <> >= > < <= * + /
Name.Table les noms des tables
Name.Field les noms des champs des tables
Name.Builtin les fonctions prédéfinies suivantes (leur nom n’est pas sensible à la

casse) : avg, count, char_lenght, concat, curdate, current_date,
date_format, day, lower, ltrim, max, min, month, now, rank, round,
rtrim, substring, sum, upper et year.

Comment les commentaires (débutant par -- ou bien entre /* et */)
Comment.LaTeX les commentaires commençant par --> qui sont composés par piton

comme du code LaTeX (et appelés simplement « commentaires LaTeX »
dans ce document)

Keyword les mots-clés suivants (leur nom n’est pas sensible à la casse) : abort,
action, add, after, all, alter, always, analyze, and, as, asc,
attach, autoincrement, before, begin, between, by, cascade, case,
cast, check, collate, column, commit, conflict, constraint,
create, cross, current, current_date, current_time,
current_timestamp, database, default, deferrable, deferred,
delete, desc, detach, distinct, do, drop, each, else, end, escape,
except, exclude, exclusive, exists, explain, fail, filter, first,
following, for, foreign, from, full, generated, glob, group,
groups, having, if, ignore, immediate, in, index, indexed,
initially, inner, insert, instead, intersect, into, is, isnull,
join, key, last, left, like, limit, match, materialized, natural,
no, not, nothing, notnull, null, nulls, of, offset, on, or, order,
others, outer, over, partition, plan, pragma, preceding, primary,
query, raise, range, recursive, references, regexp, reindex,
release, rename, replace, restrict, returning, right, rollback,
row, rows, savepoint, select, set, table, temp, temporary, then,
ties, to, transaction, trigger, unbounded, union, unique, update,
using, vacuum, values, view, virtual, when, where, window, with,
without

Si on souhaite que les mots-clés soient capitalisés automatiquement, on peut modifier le style Keywords
localement pour le langage SQL avec l’instruction :

\SetPitonStyle[SQL]{Keywords = \bfseries \MakeUppercase}

49

9.5 Les langages définis par la commande \NewPitonLanguage

La commande \NewPitonLanguage, qui permet de définir de nouveaux langages en utilisant la syntaxe
de l’extension listings, a été présentée p. 10.
Tous les langages définis avec la commande \NewPitonLanguage partagent les mêmes styles.

Style Usage
Number les nombres
String.Long les chaînes de caractères définies dans \NewPitonLanguage par la clé

morestring
Comment les commentaires définis dans \NewPitonLanguage par la clé

morecomment
Comment.LaTeX les commentaires qui sont composés par piton comme du code LaTeX

(et appelés simplement « commentaires LaTeX » dans ce document)
Keyword les mots-clés, définis dans \NewPitonLanguage par les clés

morekeywords et moretexcs (et également la clé sensitive qui
indique si les mots-clés sont sensibles à la casse)

Directive les directives définies dans \NewPitonLanguage par la clé
moredirectives

Tag les « tags » définis par la clé tag (les lexèmes détectés à l’intérieur d’un
tag seront aussi composés avec leur propre style)

Identifier les identificateurs.

Voici une possibilité de définition d’un language HTML, obtenu par une légère adaptation de la
définition faite par listings (fichier lstlang1.sty).

\NewPitonLanguage{HTML}%
{morekeywords={A,ABBR,ACRONYM,ADDRESS,APPLET,AREA,B,BASE,BASEFONT,%

BDO,BIG,BLOCKQUOTE,BODY,BR,BUTTON,CAPTION,CENTER,CITE,CODE,COL,%
COLGROUP,DD,DEL,DFN,DIR,DIV,DL,DOCTYPE,DT,EM,FIELDSET,FONT,FORM,%
FRAME,FRAMESET,HEAD,HR,H1,H2,H3,H4,H5,H6,HTML,I,IFRAME,IMG,INPUT,%
INS,ISINDEX,KBD,LABEL,LEGEND,LH,LI,LINK,LISTING,MAP,META,MENU,%
NOFRAMES,NOSCRIPT,OBJECT,OPTGROUP,OPTION,P,PARAM,PLAINTEXT,PRE,%
OL,Q,S,SAMP,SCRIPT,SELECT,SMALL,SPAN,STRIKE,STRING,STRONG,STYLE,%
SUB,SUP,TABLE,TBODY,TD,TEXTAREA,TFOOT,TH,THEAD,TITLE,TR,TT,U,UL,%
VAR,XMP,%
accesskey,action,align,alink,alt,archive,axis,background,bgcolor,%
border,cellpadding,cellspacing,charset,checked,cite,class,classid,%
code,codebase,codetype,color,cols,colspan,content,coords,data,%
datetime,defer,disabled,dir,event,error,for,frameborder,headers,%
height,href,hreflang,hspace,http-equiv,id,ismap,label,lang,link,%
longdesc,marginwidth,marginheight,maxlength,media,method,multiple,%
name,nohref,noresize,noshade,nowrap,onblur,onchange,onclick,%
ondblclick,onfocus,onkeydown,onkeypress,onkeyup,onload,onmousedown,%
profile,readonly,onmousemove,onmouseout,onmouseover,onmouseup,%
onselect,onunload,rel,rev,rows,rowspan,scheme,scope,scrolling,%
selected,shape,size,src,standby,style,tabindex,text,title,type,%
units,usemap,valign,value,valuetype,vlink,vspace,width,xmlns},%

tag=<>,%
alsoletter = - ,%
sensitive=f,%
morestring=[d]",
}

50

9.6 Le langage « minimal »

On peut basculer vers le langage « minimal» avec la clé language : language = minimal

Style Usage
Number les nombres
String les chaînes de caractères (qui sont entre ")
Comment les commentaires (qui débutent par #)
Comment.LaTeX les commentaires commençant par #> qui sont composés par piton

comme du code LaTeX (et appelés simplement « commentaires LaTeX »
dans ce document)

Identifier les identificateurs.

Ce langage « minimal» est proposé par piton à l’utilisateur final pour qu’il puisse y ajouter des
formatages de mots-clés avec la commande \SetPitonIdentifier (cf. 6.5, p. 24) et créer par exemple
un langage pour pseudo-code.

9.7 Le langage « verbatim »

On peut basculer vers le langage « verbatim» avec la clé language : language = verbatim

Style Usage
rien...

Le langage « verbatim» ne propose aucun style et ne fait donc aucun formatage syntaxique. On peut
néanmoins y utiliser le mécanisme detected-commands (cf. partie 6.6.3, p. 26) ainsi que le mécanisme
de détection des commandes et des environnements de Beamer.

51

Index

A
add-to-split-separation, 22
annotation (clé), 15
auto-gobble, 4

B
background-color, 5
Beamer (classe), 29
begin-escape, 28
begin-escape-math, 28
begin-range, 14
box (clé), 15
break-lines, 20

break-lines-in-Piton, 20
break-lines-in-piton, 20

C
comment-latex, 25
commentaires LaTeX, 25, 36
continuation-symbol, 20
continuation-symbol-on-indentation, 20

D
\DeclarePitonEnvironment, 10
detected-beamer-commands, 30
detected-beamer-environments, 30
detected-commands (clé), 26

E
échappements vers LaTeX, 25
end-escape, 28
end-escape-math, 28
end-of-broken-line, 20
end-range, 14
env-gobble, 4
env-used-by-split, 22
escape-math, 28

F
font-command, 4
footnote (extension), 31
footnote (clé), 31
footnotehyper (extension), 31
footnotehyper (clé), 31

G
gobble, 4

auto-gobble, 4
env-gobble, 4

I
indent-broken-lines, 20

J
join (clé), 14

L
label-as-zlabel, 26
language (clé), 2
left-margin, 5
line-numbers, 4
listings (extension), 10

M
marker/beginning, 13
marker/end, 13
marker/include-lines, 13
math-comments, 26
max-width (clé), 6
minimal (langage « minimal »), 51

N
\NewPitonEnvironment, 10
\NewPitonLanguage, 10, 50
numérotation des lignes de code, 34

P
paperclip (clé), 14
path, 12
path-write, 14
{Piton}, 2
\piton, 3
piton.get_last_code (fonction Lua), 33
\PitonInputFile, 12
\PitonOptions, 4
\PitonStyle, 8
print (clé), 14
prompt-background-color, 6
\ProvidePitonEnvironment, 10
pyluatex (extension), 42
{pythonrepl} (environnement de pyluatex), 43

R
raw-detected-commands (clé), 26
\RenewPitonEnvironment, 10
right-margin, 5
rounded-corners, 6
\rowcolor, 8, 37

S
\SetPitonIdentifier, 24
\SetPitonStyle, 7
show-spaces, 6
show-spaces-in-strings, 6
split-on-empty-lines, 22
split-separation, 22
splittable, 21
splittable-on-empty-lines, 21
styles (concept de piton), 7

52

T
tab-size, 33
tabulations, 33
tcolorbox (clé), 16, 38

U
UserFunction (style), 9

V
verbatim (langage « verbatim »), 51
vertical-detected-commands (clé), 26

W
width (clé), 6
write (clé), 14

Z
\zcref, 26
\zlabel, 26

53

Remerciements

Remerciements à Yann Salmon et Pierre Le Scornet pour leurs nombreuses suggestions pertinentes.

Autre documentation

Le document piton.pdf (fourni avec l’extension piton) contient une traduction anglaise de la docu-
mentation ici présente ainsi qu’un historique des versions. Le fichier piton-code.pdf contient le code
commenté de l’extension piton.

Les versions successives du fichier piton.sty fournies par TeX Live sont disponibles sur le serveur
svn de TeX Live :
https://tug.org/svn/texlive/trunk/Master/texmf-dist/tex/lualatex/piton/piton.sty

Le développement de l’extension piton se fait sur le dépôt GitHub suivant :
https://github.com/fpantigny/piton

Table des matières

1 Présentation 1

2 Utilisation de l’extension 2
2.1 Choix du langage . 2
2.2 Chargement de l’extension . 2
2.3 Les commandes et environnements à la disposition de l’utilisateur 2
2.4 La double syntaxe de la commande \piton . 3

3 Personnalisation 4
3.1 Les clés de la commande \PitonOptions . 4
3.2 Les styles . 7

3.2.1 Notion de style . 7
3.2.2 Styles locaux et globaux . 8
3.2.3 La commande \rowcolor . 8
3.2.4 Le style UserFunction . 9

3.3 Définition de nouveaux environnements . 10

4 Définition de nouveaux langages avec la syntaxe de listings 10

5 Importation et exportation de listings 12
5.1 Importation d’un listing fourni par un fichier externe 12

5.1.1 La commande \PitonInputFile . 12
5.1.2 Insertion d’une partie d’un fichier . 12

5.2 Exportation de listings . 14

6 Fonctionnalités avancées 15
6.1 La clé « box » . 15
6.2 La clé « tcolorbox » . 16
6.3 Coupure des lignes et des pages . 20

6.3.1 Coupure des lignes . 20
6.3.2 Coupure des pages . 21

6.4 Découpe d’un listing en sous-listings . 22
6.5 Mise en évidence d’identificateurs . 24
6.6 Les échappements vers LaTeX . 25

54

6.6.1 Les « commentaires LaTeX » . 25
6.6.2 La clé « math-comments » . 26
6.6.3 La clé « detected-commands » et ses variantes 26
6.6.4 Le mécanisme « escape » . 28
6.6.5 Le mécanisme « escape-math » . 28

6.7 Comportement dans la classe Beamer . 29
6.7.1 {Piton} et \PitonInputFile sont “overlay-aware” 29
6.7.2 Commandes de Beamer reconnues dans {Piton} et \PitonInputFile 30
6.7.3 Environnements de Beamer reconnus dans {Piton} et \PitonInputFile 30

6.8 Notes de pied de page dans les environnements de piton 31
6.9 Tabulations . 33

7 API pour les développeurs 33

8 Exemples 33
8.1 Un exemple de réglage des styles . 33
8.2 Numérotation des lignes . 34
8.3 Formatage des commentaires LaTeX . 36
8.4 La commande \rowcolor . 37
8.5 Utilisation avec tcolorbox . 38
8.6 Utilisation avec pyluatex . 42

8.6.1 Utilisation standard de pyluatex . 42
8.6.2 Utilisation de l’environnement {pythonrepl} de pyluatex 43

9 Les styles pour les différents langages informatiques 46
9.1 Le langage Python . 46
9.2 Le langage OCaml . 47
9.3 Le langage C (et C++) . 48
9.4 Le langage SQL . 49
9.5 Les langages définis par la commande \NewPitonLanguage 50
9.6 Le langage « minimal » . 51
9.7 Le langage « verbatim » . 51

Index 52

55

	Présentation
	Utilisation de l'extension
	Choix du langage
	Chargement de l'extension
	Les commandes et environnements à la disposition de l'utilisateur
	La double syntaxe de la commande \piton

	Personnalisation
	Les clés de la commande \PitonOptions
	Les styles
	Notion de style
	Styles locaux et globaux
	La commande \rowcolor
	Le style UserFunction

	Définition de nouveaux environnements

	Définition de nouveaux langages avec la syntaxe de listings
	Importation et exportation de listings
	Importation d'un listing fourni par un fichier externe
	La commande \PitonInputFile
	Insertion d'une partie d'un fichier

	Exportation de listings

	Fonctionnalités avancées
	La clé «box»
	La clé «tcolorbox»
	Coupure des lignes et des pages
	Coupure des lignes
	Coupure des pages

	Découpe d'un listing en sous-listings
	Mise en évidence d'identificateurs
	Les échappements vers LaTeX
	Les «commentaires LaTeX»
	La clé «math-comments»
	La clé «detected-commands» et ses variantes
	Le mécanisme «escape»
	Le mécanisme «escape-math»

	Comportement dans la classe Beamer
	{Piton} et \PitonInputFile sont ``overlay-aware''
	Commandes de Beamer reconnues dans {Piton} et \PitonInputFile
	Environnements de Beamer reconnus dans {Piton} et \PitonInputFile

	Notes de pied de page dans les environnements de piton
	Tabulations

	API pour les développeurs
	Exemples
	Un exemple de réglage des styles
	Numérotation des lignes
	Formatage des commentaires LaTeX
	La commande \rowcolor
	Utilisation avec tcolorbox
	Utilisation avec pyluatex
	Utilisation standard de pyluatex
	Utilisation de l'environnement {pythonrepl} de pyluatex

	Les styles pour les différents langages informatiques
	Le langage Python
	Le langage OCaml
	Le langage C (et C++)
	Le langage SQL
	Les langages définis par la commande \NewPitonLanguage
	Le langage «minimal»
	Le langage «verbatim»

	Index

