
L’extension nicematrix ∗

F. Pantigny
fpantigny@wanadoo.fr

5 janvier 2026

Résumé
L’extension LaTeX nicematrix fournit de nouveaux environnements similaires aux environne-

ments classiques {tabular}, {array} et {matrix} de array et amsmath mais avec des fonctionna-
lités plus étendues.


C1 C2 Cn

L1 a11 a12 a1n
L2 a21 a22 a2n

Ln an1 an2 ann



dimensions (cm)
L l h

petit 3 5.5 1 30
standard 5.5 8 1.5 50.5
premium 8.5 10.5 2 80
extra 8.5 10 1.5 85.5
spécial 12 12 0.5 70

Produit

Pr
ix

L’extension nicematrix est entièrement contenue dans le fichier nicematrix.sty. Ce fichier peut être
placé dans le répertoire courant ou dans une arborescence texmf. Le mieux reste néanmoins d’installer
nicematrix avec une distribution TeX comme MiKTeX, TeX Live ou MacTeX.
Remarque : Si vous utilisez un service LaTeX via Internet (ex. : Overleaf ou TeXPage) vous pouvez
télécharger le fichier nicematrix.sty dans le dossier de votre projet pour bénéficier de la dernière
version de nicematrix.1

Cette extension peut être utilisée avec xelatex, lualatex et pdflatex mais aussi avec le cheminement
classique latex-dvips-ps2pdf (ou Adobe Distiller). Néanmoins, le fichier nicematrix-french.tex de la
présente documentation ne peut être compilé qu’avec LuaLaTeX.
Cette extension nécessite et charge les extensions array, amsmath et pgfcore ainsi que le module shapes
de pgf (l’extension tikz, qui est une surcouche de pgf, n’est pas chargée). L’utilisateur final n’a qu’à
charger l’extension nicematrix avec l’instruction habituelle : \usepackage{nicematrix}.
L’idée de nicematrix est de créer des nœuds pgf derrière les cases et les positions des filets des tableaux
créés par array et de les utiliser pour développer de nouvelles fonctionnalités. Comme toujours avec
pgf, les coordonnées de ces nœuds sont écrites dans le fichier aux pour être utilisées à la compilation
suivante. C’est pourquoi l’utilisation de nicematrix nécessite plusieurs compilations successives2.
L’utilisateur ne doit pas utiliser la commande \nofiles (qui bloque l’écriture du fichier aux).
La plupart des fonctionnalités de nicematrix sont accessibles sans avoir à utiliser explicitement pgf
ou TikZ (ce dernier n’est d’ailleurs pas chargé par défaut).
Une commande \NiceMatrixOptions est fournie pour régler les options (la portée des options fixées
par cette commande est le groupe TeX courant : elles sont semi-globales).

∗Ce document correspond à la version 7.5a de nicematrix, en date du 2026/01/05.
1La dernière version de nicematrix.sty peut être téléchargée sur le dépôt Github de nicematrix :

https://github.com/fpantigny/nicematrix/releases
2Si vous utilisez Overleaf, Overleaf effectue automatiquement un nombre de compilations suffisant (en utilisant

latexmk).

1

https://github.com/fpantigny/nicematrix/releases

Table des matières
1 Les environnements de cette extension 4

2 L’espace vertical entre les rangées 4

3 La clé baseline 5

4 Les blocs 6
4.1 Cas général . 6
4.2 Les blocs mono-colonne . 8
4.3 Les blocs mono-rangée . 9
4.4 Les blocs mono-case . 9
4.5 Positionnement horizontal du contenu des blocs . 9
4.6 Positionnement vertical du contenu des blocs . 11
4.7 \\ et & dans les blocs . 12

5 Les filets horizontaux et verticaux 13
5.1 Quelques différences avec les environnements classiques 13

5.1.1 Les filets verticaux . 13
5.1.2 La commande \cline . 14

5.2 L’épaisseur et la couleur des filets . 14
5.3 Les outils de nicematrix pour tracer des filets . 14

5.3.1 Les clés hlines et vlines . 15
5.3.2 Les clés hvlines et hvlines-except-borders . 16
5.3.3 Les coins (vides) . 16
5.3.4 La commande \diagbox . 17
5.3.5 Commandes pour filets personnalisés . 18

6 Les couleurs de fond des rangées et des colonnes 21
6.1 Utilisation de colortbl . 21
6.2 Les outils de nicematrix dans le \CodeBefore . 21
6.3 Outils de coloriage en tableau . 26
6.4 La couleur spécial « nocolor » . 28

7 La commande \RowStyle 28

8 La largeur des colonnes 29
8.1 Techniques de base . 29
8.2 Les colonnes V de varwidth . 30
8.3 Les colonnes X . 31

9 Les rangées et colonnes extérieures 31

10 Les lignes en pointillés continues 33
10.1 L’option xdots/nullify . 34
10.2 Les commandes \Hdotsfor et \Vdotsfor . 35
10.3 Comment créer les lignes en pointillés de manière transparente 36
10.4 Les labels des lignes en pointillés . 37
10.5 Personnalisation des lignes en pointillés . 37
10.6 Les lignes pointillées et les filets . 38
10.7 Les commandes \Hbrace et \Vbrace . 39

11 Délimiteurs dans le préambule de l’environnement 40

12 Le \CodeAfter 41
12.1 La commande \line dans le \CodeAfter . 41
12.2 La commande \SubMatrix dans le \CodeAfter (et le \CodeBefore) 42
12.3 Les commandes \OverBrace et \UnderBrace dans le \CodeAfter 45
12.4 La commande \TikzEveryCell dans le \CodeAfter 46

2

13 Les légendes et les notes dans les tableaux 46
13.1 La légendes des tableaux . 46
13.2 Les notes de pied de page . 47
13.3 Les notes de tableaux . 47
13.4 Personnalisation des notes de tableau . 49
13.5 Utilisation de {NiceTabular} avec threeparttable . 51

14 Autres fonctionnalités 51
14.1 La clé rounded-corners . 51
14.2 Commande \ShowCellNames . 52
14.3 Utilisation du type de colonne S de siunitx . 52
14.4 Type de colonne par défaut dans {NiceMatrix} . 52
14.5 La commande \rotate . 53
14.6 L’option small . 53
14.7 \AutoNiceMatrix et les compteurs iRow et jCol . 54
14.8 L’option light-syntax . 55
14.9 Couleur des délimiteurs . 55
14.10 L’environnement {NiceArrayWithDelims} . 55
14.11 La commande \OnlyMainNiceMatrix . 55

15 Utilisation de TikZ avec nicematrix 56
15.1 Les nœuds correspondant aux contenus des cases . 56

15.1.1 La clé pgf-node-code . 57
15.1.2 Les colonnes V de varwidth . 57

15.2 Les « nœuds moyens » et les « nœuds larges » . 58
15.3 Les nœuds indiquant la position des filets . 59
15.4 Les nœuds correspondant aux commandes \SubMatrix 60

16 API pour les développeurs 61

17 Remarques techniques 62
17.1 Lignes diagonales . 62
17.2 Les cases « vides » . 62
17.3 L’option exterior-arraycolsep . 63
17.4 Incompatibilités . 63
17.5 Compatibilité avec le Tagging Project de LaTeX . 64

18 Exemples 64
18.1 Utilisation de la clé « tikz » de la commande \Block 64
18.2 Utilisation avec tcolorbox . 65
18.3 Notes dans les tableaux . 66
18.4 Lignes en pointillés . 67
18.5 Des lignes pointillées qui ne sont plus pointillées . 68
18.6 Lignes en tiretés . 70
18.7 Empilements de matrices . 70
18.8 Comment surligner les cases d’une matrice . 74
18.9 Utilisation de \SubMatrix dans le \CodeBefore . 76
18.10 Un tableau triangulaire . 77

Index 79

3

1 Les environnements de cette extension

L’extension nicematrix définit les nouveaux environnements suivants :
{NiceTabular} {NiceArray} {NiceMatrix} {NiceArrayWithDelims}
{NiceTabular*} {pNiceArray} {pNiceMatrix}
{NiceTabularX} {bNiceArray} {bNiceMatrix}

{BNiceArray} {BNiceMatrix}
{vNiceArray} {vNiceMatrix}
{VNiceArray} {VNiceMatrix}

Les environnements {NiceArray}, {NiceTabular} et {NiceTabular*} sont similaires aux environ-
nements {array}, {tabular} et {tabular*} de l’extension array (qui est chargée par nicematrix).

Les environnements {pNiceArray}, {bNiceArray}, etc. n’ont pas d’équivalents dans array.

Les environnements {NiceMatrix}, {pNiceMatrix}, etc. sont similaires aux environnements corres-
pondants de l’amsmath (qui est chargée par nicematrix) : {matrix}, {pmatrix}, etc.

L’environnement {NiceTabularX} est similaire à l’environnement {tabularx} de l’extension épo-
nyme.3

L’environnement {NiceArrayWithDelims} est une généralisation de {NiceArray} et ses variantes
(cf. p. 55).

On conseille d’utiliser prioritairement les environnements classiques et de n’utiliser les
environnements de nicematrix que lorsqu’on utilise les fonctionnalités supplémentaires
offertes par ces environnements (cela permet d’économiser la mémoire et d’accélérer la
compilation).4

Tous les environnements de l’extension nicematrix acceptent, entre crochets, une liste optionnelle de
paires de la forme clé=valeur. Il doit n’y avoir aucun espace devant le crochet ouvrant ([)
de cette liste d’options.

2 L’espace vertical entre les rangées

Il est bien connu que certaines rangées5 des tableaux créés par défaut avec LaTeX sont trop proches
l’une de l’autre. On en donne ci-dessous un exemple classique.

$\begin{pmatrix}
\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{3} & \frac{1}{4} \\
\end{pmatrix}$

(
1
2 − 1

2
1
3

1
4

)

En s’inspirant de l’extension cellspace qui traite de ce problème, l’extension nicematrix propose deux
clés cell-space-top-limit et cell-space-bottom-limit qui sont similaires aux deux paramètres
\cellspacetoplimit et \cellspacebottomlimit proposés par cellspace.
Il existe aussi une clé cell-space-limits pour régler simultanément les deux paramètres.
La valeur initiale de ces paramètres est 0 pt pour que les environnements de nicematrix aient par
défaut le même comportement que ceux de array et de l’amsmath mais une valeur de 1 pt serait un
bon choix. On conseille de régler leurs valeurs avec la commande \NiceMatrixOptions.6

3Néanmoins, on peut aussi utiliser directement les colonnes X dans l’environnement {NiceTabular}, la largeur sou-
haitée pour le tableau étant spécifiée par la clé width : cf. p. 31.

4Pour accélérer les compilations, on peut aussi utiliser ponctuellement la clé no-cell-nodes qui supprime la création
des nœuds PGF-TikZ correspondants aux contenus des cellules mais certains fonctionnalités ne seront plus disponibles
(cf. 56).

5Dans ce document, on parlera de rangée pour désigner uniquement les rangées horizontales. Les colonnes, par
opposition, sont verticales.

6On remarquera que ces paramètres s’appliquent aussi aux colonnes de type S de siunitx alors que cellspace n’est pas
utilisable avec ces colonnes.

4

\NiceMatrixOptions{cell-space-limits = 1pt}

$\begin{pNiceMatrix}
\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{3} & \frac{1}{4} \\
\end{pNiceMatrix}$

(
1
2 − 1

2
1
3

1
4

)

Il est également possible de changer ces paramètres pour certaines rangées du tableau seulement grâce
à la commande \RowStyle (cf. p. 28).

3 La clé baseline

L’extension nicematrix propose une option baseline pour la position verticale des tableaux. Cette
option baseline prend comme valeur un entier qui indique le numéro de rangée dont la ligne de base
servira de ligne de base pour le tableau.

$A = \begin{pNiceMatrix}[baseline=2]
\frac{1}{\sqrt{1+p^2}} & p & 1-p \\
1 & 1 & 1 \\
1 & p & 1+p
\end{pNiceMatrix}$

A =

 1√
1+p2

p 1− p

1 1 1
1 p 1 + p



L’option baseline peut aussi prendre les trois valeurs spéciales t, c et b. Ces trois lettres peuvent
aussi être utilisées de manière absolue comme pour l’option des environnements {tabular} et {array}
tels que définis par l’extension array. La valeur initiale de baseline est c.

Dans l’exemple suivant, on utilise l’option t (synonyme de baseline=t) immédiatement après un
\item de liste. On remarquera que la présence d’un \hline initial n’empêche pas l’alignement sur la
ligne de base de la première rangée (avec {tabular} ou {array} de l’extension array, il faut utiliser
\firsthline).
\begin{enumerate}
\item un item
\smallskip
\item \renewcommand{\arraystretch}{1.2}
$\begin{NiceArray}[t]{lcccccc}
\hline
n & 0 & 1 & 2 & 3 & 4 & 5 \\
u_n & 1 & 2 & 4 & 8 & 16 & 32
\hline
\end{NiceArray}$
\end{enumerate}

1. un item

2. n 0 1 2 3 4 5

un 1 2 4 8 16 32

Il est également possible d’utiliser les outils de booktabs : \toprule, \bottomrule, \midrule, etc., à
condition, bien entendu, d’avoir chargé booktabs.
\begin{enumerate}
\item an item
\smallskip
\item
$\begin{NiceArray}[t]{lcccccc}
\toprule
n & 0 & 1 & 2 & 3 & 4 & 5 \\
\midrule
u_n & 1 & 2 & 4 & 8 & 16 & 32
\bottomrule
\end{NiceArray}$
\end{enumerate}

1. an item

2. n 0 1 2 3 4 5

un 1 2 4 8 16 32

5

On peut aussi utiliser la clé baseline pour aligner une matrice sur un filet horizontal (tracé par
\hline). On doit pour cela donner la valeur line-i où i est le numéro de la rangée qui suit ce filet
horizontal.
\NiceMatrixOptions{cell-space-limits=1pt}

$A=\begin{pNiceArray}{cc|cc}[baseline=line-3]
\dfrac{1}{A} & \dfrac{1}{B} & 0 & 0 \\
\dfrac{1}{C} & \dfrac{1}{D} & 0 & 0 \\
\hline
0 & 0 & A & B \\
0 & 0 & D & D \\
\end{pNiceArray}$

A =


1

A

1

B
0 0

1

C

1

D
0 0

0 0 A B
0 0 D D



4 Les blocs

4.1 Cas général

Dans les environnements de nicematrix, on peut utiliser la commande \Block pour placer un élément
au centre d’un rectangle de cases fusionnées.7
La commande \Block doit être utilisée dans la case supérieure gauche du bloc avec deux arguments
obligatoires.

• Le premier argument est la taille de ce bloc avec la syntaxe i-j où i est le nombre de rangées et
j le nombre de colonnes du bloc.
Si cet argument est laissé blanc, la valeur par défaut est 1-1. Si le nombre de rangées n’est pas
indiqué, ou bien est égal à *, le bloc s’étend jusqu’à la dernière rangée (idem pour les colonnes).

• Le deuxième argument est le contenu du bloc.
Dans {NiceTabular}, {NiceTabular*} et {NiceTabularX}, le contenu est composé en mode
texte tandis que, dans les autres environnements, il est composé en mode mathématique.
Pour des raisons techniques liées à LaTeX, on ne peut pas débuter le contenu du bloc par une
commande \color (mais on peut envisager d’utiliser \textcolor).8

Voici un exemple d’utilisation de la commande \Block dans une matrice mathématique.

$\begin{bNiceArray}{cw{c}{1cm}c|c}[margin]
\Block{3-3}{A} & & & 0 \\
& & & \Vdots \\
& & & 0 \\
\hline
0 & \Cdots& 0 & 0
\end{bNiceArray}$


0

0
0 0 0

A



On peut souhaiter agrandir la taille du «A» placé dans le bloc de l’exemple précédent. Comme il est
composé en mode mathématique, on ne peut pas directement utiliser une commande comme \large,
\Large ou \LARGE. C’est pourquoi une option à mettre entre chevrons est proposée par \Block pour
spécifier du code LaTeX qui sera inséré avant le début du mode mathématique.9

7Les espaces situés après une commande \Block sont supprimés.
8cf. https://tex.stackexchange.com/questions/674788
9Cet argument entre chevrons peut aussi être utilisé pour insérer une commande de fonte comme \bfseries, ce qui

peut être utile dans le cas où la commande \\ apparaît dans le contenu du bloc. On peut aussi y mettre la commmande
\rotate fournie par nicematrix (cf. partie 14.5, p. 53).

6

https://tex.stackexchange.com/questions/674788

$\begin{bNiceArray}{cw{c}{1cm}c|c}[margin]
\Block{3-3}<\LARGE>{A} & & & 0 \\
& & & \Vdots \\
& & & 0 \\
\hline
0 & \Cdots& 0 & 0
\end{bNiceArray}$


0

0
0 0 0

A



La commande \Block accepte en premier argument optionnel (entre crochets) une liste de couples
clé=valeur.
Les premières clés sont des outils rapides pour contrôler l’apparence du bloc :

• la clé fill prend en argument une couleur et remplit le bloc avec cette couleur ;

• la clé opacity fixe l’opacité de la couleur de remplissage donnée par fill ;10

• la clé draw prend en argument une couleur et trace le cadre avec cette couleur (la valeur par
défaut de cette clé est la couleur courante des filets du tableau) ;

• la clé color prend en argument une couleur et l’applique au contenu et trace également le cadre
avec cette couleur ;

• les clés hlines , vlines et hvlines tracent les filets correspondants dans le bloc11 ;

• la clé line-width fixe la largeur utilisée pour tracer les filets (n’a d’intérêt que si draw, hvlines,
hlines ou vlines est utilisée) ;

• la clé rounded-corners impose des coins arrondis (pour le cadre dessiné par draw et le fond
dessiné par fill) avec un rayon égal à la valeur de cette clé (la valeur par défaut est 4 pt12).

Ces outils ne sont parfois pas suffisants pour contrôler l’apparence du bloc. Les clés suivantes sont
plus puissantes, mais plus difficiles d’utilisation. Elles nécessitent également que TikZ soit chargé (par
\usepackage{tikz}). Par défaut, nicematrix ne charge pas TikZ mais uniquement pgf, qui est une
sous-couche de TikZ.

• La clé borders permet de ne tracer que certaines des bordures du bloc : cette clé prend comme
valeur une liste d’éléments parmi les suivants : left, right, top et bottom ; on peut en fait,
dans la liste qui est la valeur de la clé borders mettre une entrée de la forme tikz={liste} où
liste est une liste de couples clé=valeur de TikZ spécifiant les caractéristiques graphiques des
traits qui seront dessinés (pour un exemple, voir p. 70).

• Quand la clé tikz est utilisée, le chemin TikZ correspondant au rectangle délimitant le bloc
est exécuté avec TikZ13 en utilisant comme options la valeur de cette clé tikz (qui doit donc
être une liste de clés TikZ applicables à un chemin de TikZ). Pour des exemples d’utilisation
de cette clé tikz, voir p. 64.
En fait, dans la liste des clés fournies à tikz, on peut mettre une clé offset . Cette clé n’est
pas fournie par TikZ mais par nicematrix. Elle réduit le rectangle correspondant au bloc par une
marge (horizontalement et verticalement) égale à la valeur (passée à offset). C’est ce rectangle
réduit qui sera le chemin exécuté par TikZ avec comme options les autres clés passées à la clé
tikz.

Enfin, il existe quelque clés techniques :

• la clé name donne un nom au nœud TikZ rectangulaire correspondant au bloc ; on peut utiliser
ce nom avec TikZ dans le \CodeAfter (cf. p. 41) ;

10Attention : cette fonctionnalité génère des instructions de transparence dans le pdf résultant et certains lecteurs
de pdf n’acceptent pas la transparence. L’application de l’opacité est faite par \pgfsetfillopacity

11Néanmoins, les filets ne sont pas tracés dans les sous-blocs du bloc, conformément à l’esprit de nicematrix : les filets
ne sont pas tracés dans les blocs, sauf s’ils possèdent la clé transparent (cf. section 5 p. 13).

12Cette valeur par défaut est la valeur initiale des rounded corners de TikZ.
13TikZ doit être chargé préalablement (par défaut, nicematrix ne charge que pgf), faute de quoi, une erreur sera levée.

7

• la clé respect-arraystretch évite la remise à 1 de \arraystretch en début de bloc (qui a
lieu par défaut) ;

• Par défaut, les filets ne sont pas tracés dans les blocs (voir à ce sujet la partie sur les filets,
section 5 p. 13). Néanmoins, si la clé transparent est utilisée, les filets seront tracés.14

Pour un exemple, voir la section 18.1, page 64.
Attention : cette clé n’implique pas du tout que le contenu du bloc sera transparent.

Il existe aussi des clés de positionnement horizontal et vertical du contenu du bloc qui sont décrites
ci-dessous (cf. 4.5 p. 9).

On doit remarquer que, par défaut, les blocs ne créent pas d’espace. Il n’y a exception que
pour les blocs mono-rangée et les blocs mono-colonne dans certaines conditions comme expliqué plus
loin.

Dans l’exemple suivant, on a dû élargir à la main les colonnes 2 et 3 (avec la construction classique
w{c}{...} de l’extension array).

\begin{NiceTabular}{cw{c}{2cm}w{c}{3cm}c}
rose & tulipe & marguerite & dahlia \\
violette
& \Block[draw=red,fill=[RGB]{204,204,255},rounded-corners]{2-2}
 {\LARGE De très jolies fleurs}
 & & souci \\
pervenche & & & lys \\
arum & iris & jacinthe & muguet
\end{NiceTabular}

rose tulipe marguerite dahlia
violette souci

pervenche lys
arum iris jacinthe muguet

De très jolies fleurs

4.2 Les blocs mono-colonne

Les blocs mono-colonne ont un comportement spécial.

• La largeur naturelle du contenu de ces blocs est prise en compte pour la largeur de la colonne
courante.
Dans les colonnes à largeur fixée (p{...}, b{...}, m{...}, w{...}{...}, W{...}{...}, V{...},
similaires aux colonnes V de varwidth, et X, similaires aux colonnes X de tabularx), le contenu du
bloc est mis en forme comme un paragraphe de cette largeur.

• La spécification d’alignement horizontal donnée par le type de colonne (c, r ou l) est prise
en compte pour le bloc. Pour un bloc dans une colonne de type p{...}, b{...}, m{...},
V{...} ou X, c’est un alignement c qui est retenu par défaut. Néanmoins, ces types de colonnes
peuvent avoir une option d’alignement (par ex. p[l]{...}), et dans ce cas-là, c’est cette option
d’alignement qui est transmise au bloc.
Notons enfin que le bloc peut avoir sa propre spécification d’alignement horizontal : cf. 4.5 p. 9.

• Les spécifications de fontes imposées à une colonne via la construction >{...} dans le préambule
du tableau sont prises en compte pour les blocs mono-colonne de cette colonne (ce comportement
est assez naturel).

14Par ailleurs, la commande \TikzEveryCell disponible dans le \CodeAfter et le \CodeBefore, ne s’applique aux
blocs avec la clé transparent.

8

\begin{NiceTabular}{@{}>{\color{blue}}lr@{}} \hline
\Block{2-1}{Pierre} & 12 \\
 & 13 \\ \hline
Jacques & 8 \\ \hline
\Block{3-1}{Stéphanie} & 18 \\
 & 17 \\
 & 15 \\ \hline
Amélie & 20 \\ \hline
Henri & 14 \\ \hline
\Block{2-1}{Estelle} & 15 \\
 & 19 \\ \hline
\end{NiceTabular}

12
13

Jacques 8
18
17
15

Amélie 20
Henri 14

15
19

Pierre

Stéphanie

Estelle

4.3 Les blocs mono-rangée

Pour les blocs mono-rangée, la hauteur (height) et la profondeur (depth) naturelles sont prises en
compte pour la hauteur et la largeur de la rangée en cours (comme le fait la commande standard
\multicolumn de LaTeX), sauf lorsqu’une option de placement vertical a été utilisée pour le bloc
(une des clés t, b, m, T et B décrites à la partie 4.6, p. 11).

4.4 Les blocs mono-case

Les blocs mono-case héritent des caractéristiques des blocs mono-colonne et des blocs mono-rangée.

On pourrait penser que des blocs d’une seule case n’ont aucune utilité mais, en fait, il y a plusieurs
situations où leur utilisation peut présenter des avantages.

• Un bloc mono-case permet d’utiliser la commande \\ pour composer le bloc sur plusieurs lignes
de texte.

• On peut couper la case en plusieurs parties avec & quand la clé &-in-blocks est activée (voir
p. 12).

• On peut utiliser l’option d’alignement horizontal du bloc pour déroger à la consigne générale
donnée dans le préambule pour cette colonne (cf. 4.5 p. 9).

• On peut tracer un cadre autour du bloc avec la clé draw de la commande \Block ou colorier le
fond avec des bords arrondis avec les clés fill et rounded-corners.15

• On peut tracer une ou plusieurs bordures de la case avec la clé borders.

4.5 Positionnement horizontal du contenu des blocs

La commande \Block admet les clés l , c et r pour la position horizontale du contenu du bloc (calé
à gauche, centré ou bien calé à droite).

$\begin{bNiceArray}{cw{c}{1cm}c|c}[margin]
\Block[r]{3-3}<\LARGE>{A} & & & 0 \\
& & & \Vdots \\
& & & 0 \\
\hline
0 & \Cdots& 0 & 0
\end{bNiceArray}$


0

0
0 0 0

A



Par défaut, le positionnement horizontal des contenus des blocs est calculé sur le contenu des colonnes
impliquées. De ce fait, dans l’exemple suivant, l’en-tête « Premier groupe » est correctement centré

15Pour colorier simplement le fond d’une case, il n’y a pas besoin d’utiliser un bloc mono-case : on peut utiliser la
commande \cellcolor.

9

même si un espacement des colonnes a été demandé par une instruction comme !{\qquad} dans le
préambule (ce n’est pas le cas avec \multicolumn).

\begin{NiceTabular}{@{}c!{\qquad}ccc!{\qquad}ccc@{}}
\toprule
Rang & \Block{1-3}{Premier groupe} & & & \Block{1-3}{Deuxième groupe} \\
 & 1A & 1B & 1C & 2A & 2B & 2C \\
\midrule
 1 & 0.657 & 0.913 & 0.733 & 0.830 & 0.387 & 0.893\\
 2 & 0.343 & 0.537 & 0.655 & 0.690 & 0.471 & 0.333\\
 3 & 0.783 & 0.885 & 0.015 & 0.306 & 0.643 & 0.263\\
 4 & 0.161 & 0.708 & 0.386 & 0.257 & 0.074 & 0.336\\
\bottomrule
\end{NiceTabular}

Rang
1A 1B 1C 2A 2B 2C

1 0.657 0.913 0.733 0.830 0.387 0.893
2 0.343 0.537 0.655 0.690 0.471 0.333
3 0.783 0.885 0.015 0.306 0.643 0.263
4 0.161 0.708 0.386 0.257 0.074 0.336

Premier groupe Deuxième groupe

Pour avoir un positionnement horizontal du contenu du bloc qui s’appuie sur les limites des colonnes
du tableau LaTeX (et non sur le contenu de ces colonnes), il faut utiliser les clés L , R et C de la
commande \Block.16

Voici le même exemple avec la clé C pour le premier bloc.

\begin{NiceTabular}{@{}c!{\qquad}ccc!{\qquad}ccc@{}}
\toprule
Rang & \Block[C]{1-3}{Premier groupe} & & & \Block{1-3}{Deuxième groupe} \\
 & 1A & 1B & 1C & 2A & 2B & 2C \\
\midrule
 1 & 0.657 & 0.913 & 0.733 & 0.830 & 0.387 & 0.893\\
 2 & 0.343 & 0.537 & 0.655 & 0.690 & 0.471 & 0.333\\
 3 & 0.783 & 0.885 & 0.015 & 0.306 & 0.643 & 0.263\\
 4 & 0.161 & 0.708 & 0.386 & 0.257 & 0.074 & 0.336\\
\bottomrule
\end{NiceTabular}

Rang
1A 1B 1C 2A 2B 2C

1 0.657 0.913 0.733 0.830 0.387 0.893
2 0.343 0.537 0.655 0.690 0.471 0.333
3 0.783 0.885 0.015 0.306 0.643 0.263
4 0.161 0.708 0.386 0.257 0.074 0.336

Premier groupe Deuxième groupe

La commande \Block accepte aussi les clés p et j. Avec la clé p , le contenu du bloc est com-
posé comme un paragraphe (de manière similaire à une colonne standard de type p). Cette clé
peut s’utiliser en conjonction avec les clés l, c ou r et, alors, le paragraphe est composé avec

16On remarquera que les clés L, R et C nécessitent moins de calculs que les clés l, r et c. Si on tient à l’efficacité, on
devrait écrire \Block[C] systématiquement par défaut.

10

\raggedright, \centering ou \raggedleft (en fait, quand ragged2e est chargée, ce sont les com-
mandes \RaggedRight, \Centering et \RaggedLeft fournies par cette extension qui seront utilisées
au lieu de \raggedright, \centering et \raggedleft). Avec la clé j (qui force la clé p), le para-
graphe est composé de manière justifiée.

On peut mettre un environnement {itemize} ou {enumerate} dans un bloc qui utilise la clé p ou la
clé j (dans les autres cas, on aura une erreur : Not allowed in LR mode). Dans l’exemple suivant,
on a chargé l’extension enumitem (pour pouvoir utiliser la clé left de l’environnement {itemize}).

\begin{NiceTabular}[hvlines]{ccc}
un & deux deux & trois trois \\
un &
\Block[p,l]{*-2}{%
\begin{itemize}[left=0pt]
\item un deux trois quatre cinq
\item deux
\item trois
\end{itemize}%
} \\
un & \\
un & \\
un & \\
un & \\
un & \\
un & \\
\end{NiceTabular}

un deux deux trois trois
un
un
un
un
un
un
un

• un deux trois
quatre cinq

• deux

• trois

4.6 Positionnement vertical du contenu des blocs

Concernant le positionnement vertical, la commande \Block admet les clés m, t, b, T et B.

• Avec la clé m17, le contenu du bloc est centré verticalement.

• Avec la clé t , la ligne de base du contenu du bloc est alignée avec la ligne de base de la première
rangée concernée par le bloc.

• Avec la clé b , la ligne de base de la dernière rangée du contenu du bloc (rappelons que le contenu
du bloc peut comporter plusieurs lignes de texte séparées par \\) est alignée avec la ligne de
base de la dernière des rangées du tableau impliquées dans le bloc.

• Avec la clé T , le contenu du bloc est calé vers le haut.
Il n’y a pas de marge verticale. Néanmoins, le contenu du bloc est (toujours) composé en interne
dans une {minipage}, un {tabular} ou un {array}, ce qui fait qu’il y a souvent déjà une marge.
Si besoin est, on peut toujours ajouter un \strut.

• Avec la clé B , le contenu du bloc est calé vers le bas.

17Cette clé a un alias : v-center.

11

Quand aucune clé n’est donnée, c’est la clé m qui s’applique (sauf pour les blocs mono-rangée).
\NiceMatrixOptions{rules/color=[gray]{0.75}, hvlines}

\begin{NiceTabular}{ccc}
\Block[fill=red!10,t,l]{4-2}{deux\\lignes}
 & & \Huge Un\\
 & & deux \\
 & & trois \\
 & & \Huge quatre \\
text & text \\
\end{NiceTabular}

Un
deux
trois

quatre
text text

deux
lignes

\begin{NiceTabular}{ccc}
\Block[fill=red!10,b,r]{4-2}{deux\\lignes}
 & & \Huge Un\\
 & & deux \\
 & & trois \\
 & & \Huge quatre \\
text & text \\
\end{NiceTabular}

Un
deux
trois

quatre
text text

deux
lignes

\begin{NiceTabular}{ccc}
\Block[fill=red!10,T,L]{4-2}{deux\\lignes}
 & & \Huge Un\\
 & & deux \\
 & & trois \\
 & & \Huge quatre \\
text & text \\
\end{NiceTabular}

Un
deux
trois

quatre
text text

deux
lignes

\begin{NiceTabular}{ccc}
\Block[fill=red!10,B,R]{4-2}{deux\\lignes}
 & & \Huge Un\\
 & & deux \\
 & & trois \\
 & & \Huge quatre \\
text & text \\
\end{NiceTabular}

Un
deux
trois

quatre
text text

deux
lignes

4.7 \\ et & dans les blocs

L’extension nicematrix offre la possibilité d’utiliser directement \\ et & dans le contenu d’un bloc
(dans le but de formater son contenu) mais il y a quelques restrictions.

• On ne doit pas utiliser à la fois & et \\ dans le même bloc.

• Pour \\, il n’y a pas d’autres restrictions. On peut utiliser \\ dans un bloc pour composer du
texte sur plusieurs lignes.

• Pour pouvoir utiliser &, la clé ampersand-in-blocks (alias : &-in-blocks) doit avoir été
activée18. Le bloc est alors divisé en sous-blocs comme illustré ci-dessous. Attention toutefois :
quand ampersand-in-blocks est utilisée, l’argument (principal) de la commande \Block est
découpé syntaxiquement au niveau des esperluettes &, celles entre accolades sont masquées mais
pas celles dans un environnement.19

18Si ce n’est pas le cas, l’utilisation de & dans l’argument principal de la commande \Block provoquera une erreur :
! Extra alignment tab has been changed to \cr de TeX.

19On ne peut donc pas écrire : \Block[ampersand-in-blocks]{}{\begin{array}{cc}1&2\end{array}}. Bien sûr, on
peut le faire sans la clé ampersand-in-blocks.

12

L’esperluette & permet de diviser horizontalement un bloc en sous-blocs de même taille.

\begin{NiceTabular}{ll}%
 [hvlines,ampersand-in-blocks]
 & les cinq premiers entiers naturels \\
3 & \Block{}{un&deux&trois} \\
4 & \Block{}{un&deux&trois&quatre} \\
5 & \Block{}{un&deux&trois&quatre&cinq} \\
\end{NiceTabular}

les cinq premiers entiers naturels
3
4
5

un deux trois
un deux trois quatre

un deux trois quatre cinq

Comme on le voit, chaque bloc (ici, à chaque fois mono-case) a été divisé en sous-cases de même
taille. Dans le cas présent, on aurait peut-être préféré le codage suivant :

\begin{NiceTabular}{lccccc}%
 [hvlines,ampersand-in-blocks]
 & \Block{1-5}{les cinq premiers
 entiers naturels} \\
3 & \Block{1-5}{un & deux & trois} \\
4 & \Block{1-5}{un&deux&trois&quatre} \\
5 & un & deux & trois
 & \cellcolor{red!15} quatre & cinq \\
\end{NiceTabular}

3
4
5 un deux trois quatre cinq

les cinq premiers entiers naturels
un deux trois

un deux trois quatre

Dans ce codage, il s’agit de blocs de taille 1-5 qui sont coupés en trois et quatre sous-blocs.

On a illustré la possibilité de colorier une sous-cellule en utilisant la commande \cellcolor.

5 Les filets horizontaux et verticaux

Les techniques habituelles pour tracer des filets peuvent être utilisées dans les environnements de
nicematrix, à l’exception de \vline. Il y a néanmoins quelques petites différences de comportement
avec les environnements classiques.

5.1 Quelques différences avec les environnements classiques

5.1.1 Les filets verticaux

Dans les environnements de nicematrix, les filets verticaux spécifiés par | dans le préambule des
environnements ne sont jamais coupés, même en cas de rangée incomplète ou de double filet horizontal
spécifié par \hline\hline (il n’y a pas besoin d’utiliser l’extension hhline).

\begin{NiceTabular}{|c|c|} \hline
Premier & Deuxième \\ \hline\hline
Paul \\ \hline
Marie & Pauline \\ \hline
\end{NiceTabular}

Premier Deuxième
Paul
Marie Pauline

En revanche, les filets verticaux ne sont pas tracés à l’intérieur des blocs (créés par \Block : cf. p. 6)
ni dans les coins (dont la création est demandée par la clé corners : cf. p. 16), ni dans les éventuelles
rangées extérieures (créées par les clés first-row et last-row : cf. p. 31).

Si vous utilisez booktabs (qui fournit \toprule, \midrule, \bottomrule, etc.) et que vous tenez
absolument à mettre des filets verticaux (ce qui est contraire à l’esprit à booktabs), vous constaterez
que les filets tracés par nicematrix sont compatibles avec booktabs. Remarquez que nicematrix ne
charge pas booktabs.

$\begin{NiceArray}{c|ccc} \toprule
a & b & c & d \\ \midrule
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\ \bottomrule
\end{NiceArray}$

a b c d

1 2 3 4
1 2 3 4

13

Il reste néanmoins possible de définir un spécificateur, nommé par exemple I, pour tracer des filets
verticaux avec le comportement standard de array :

\newcolumntype{I}{!{\vrule}}

5.1.2 La commande \cline

Les traits verticaux et horizontaux que l’on insère avec \hline et le spécificateur de colonne « |» de
array rendent le tableau plus large ou plus long d’une quantité égale à la largeur du trait (avec array
et aussi avec nicematrix).
Pour des raisons historiques, il n’en est pas de même pour la commande \cline, comme on peut le
voir avec l’exemple suivant.

\setlength{\arrayrulewidth}{2pt}
\begin{tabular}{cccc} \hline
A&B&C&D \\ \cline{2-2}
A&B&C&D \\ \hline
\end{tabular}

A B C D
A B C D

Dans les environnements de nicematrix, cette situation est corrigée (il est néanmoins possible de revenir
au comportement par défaut de \cline avec la clé standard-cline).

\setlength{\arrayrulewidth}{2pt}
\begin{NiceTabular}{cccc} \hline
A&B&C&D \\ \cline{2}
A&B&C&D \\ \hline
\end{NiceTabular}

A B C D
A B C D

Dans les environnements de nicematrix, une instruction \cline{i} est équivalente à \cline{i-i}.

5.2 L’épaisseur et la couleur des filets

Les environnements de nicematrix proposent une clé rules/width pour fixer la largeur (on devrait
plutôt dire l’épaisseur) des filets dans l’environnement. En fait, cette clé ne fait que fixer la valeur du
paramètre dimensionnel de LaTeX \arrayrulewidth.
On sait que colortbl propose la commande \arrayrulecolor pour spécifier la couleur de ces filets.
Avec nicematrix, il est possible de spécifier une couleur même si colortbl n’est pas chargé. Par souci
de compatibilité, la commande est nommée également \arrayrulecolor. Néanmoins, nicematrix pro-
pose aussi une clé rules/color , disponible dans \NiceMatrixOptions ou dans un environnement
individuel, pour fixer la couleur des filets. Cette clé fixe localement la couleur des filets (alors que la
commande \arrayrulecolor agit globalement !). Elle est à privilégier.

\begin{NiceTabular}{|ccc|}[rules/color=[gray]{0.9},rules/width=1pt]
\hline
rose & tulipe & lys \\
arum & iris & violette \\
muguet & dahlia & souci \\
\hline
\end{NiceTabular}

rose tulipe lys
arum iris violette

muguet dahlia souci

En fait, dans cet exemple, au lieu de \hline, il aurait mieux valu utiliser la commande \Hline,
fournie par nicematrix et décrite ci-dessous, car elle garantit un meilleur résultat dans les lecteurs de
pdf aux bas niveaux de zoom.

5.3 Les outils de nicematrix pour tracer des filets

Les outils proposés par nicematrix pour tracer des filets sont les suivants :

• les clés hlines, vlines, hvlines et hvlines-except-borders ;

14

• le spécificateur « |» dans le préambule (pour les environnements à préambule) ;

• la commande \Hline.

Ces outils ont en commun de ne pas tracer les filets dans les blocs ni dans les coins vides
(quand la clé corners est utilisée), ni dans les rangées et colonnes extérieures.

• Les blocs en question sont :

– ceux créés par la commande \Block20 de nicematrix présentée p. 6 ;
– ceux délimités implicitement par des lignes en pointillés continues, créées par \Cdots,

\Vdots, etc. : cf. p. 33.

• Les coins sont créés par la clé corners détaillée un peu plus loin : cf. p. 16.

• Pour les rangées et colonnes extérieures, cf. p. 31.

En particulier, cette remarque montre déjà une différence entre la commande standard \hline et la
commande \Hline proposée par nicematrix.
Par ailleurs, la commande \Hline admet entre crochets un argument optionnel qui est une liste de
couples clé=valeur qui décrivent un filet. Pour la description de ces clés, voir custom-line, p. 18.21

De même que la commande \Hline, le spécificateur « |» admet entre crochets des options qui carac-
térisent le filet à tracer.
\begin{NiceTabular}{| c | [color=blue] c |}
\Hline
a & b \\
\Hline[color=red]
c & d \\
\Hline
\end{NiceTabular}

a b
c d

5.3.1 Les clés hlines et vlines

Les clés hlines et vlines tracent des filets horizontaux et verticaux.
Si aucune valeur n’est donnée, tous les filets sont tracés.

Quand une valeur est présente, il s’agit d’une liste de numéros de filets à tracer.

• Il est possible de mettre des intervalles de numéros de la forme i-j.

• Nouveau 7.4 : il est possible de mettre des numéros négatifs qui sont alors comptés à partir
de la fin.

En fait, pour les environnements avec délimiteurs (comme {pNiceMatrix} ou {bNiceArray}), la clé
vlines ne trace pas les filets extérieurs (ce qui est le comportement certainement attendu).

$\begin{pNiceMatrix}[vlines,rules/width=0.2pt]
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 2 & 3 & 4 & 5 & 6
\end{pNiceMatrix}$

1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6


Même quand la clé hlines est utilisée, il reste possible d’utiliser \Hline\Hline pour placer un filet
double horizontal. De même, on peut mettre || dans le préambule (d’un environnement à préambule)
pour placer un double filet vertical, même quand la clé vlines est utilisée.

20Et aussi la commande \multicolumn même s’il est recommandé d’utiliser plutôt \Block quand on utilise l’extension
nicematrix.

21Remarque technique. Si l’utilisateur définit une commande par-dessus la commande \Hline, il doit veiller à ce
qu’elle soit développable au sens de TeX (en utilisant \NewExpandableDocumentCommand de LaTeX3, \newcommand de
LaTeX ou même \def de TeX). Exemple : \NewExpandableDocumentCommand{\RedLine}{}{\Hline[color=red]}

15

$\begin{NiceArray}{c||ccccc}[hlines,vlines]
 & a & b & c & d & e \\ \Hline\Hline
x & 0 & 0 & 0 & 0 & 0 \\
y & 0 & 0 & 0 & 0 & 0 \\
z & 0 & 0 & 0 & 0 & 0 \\
\end{NiceArray}$

a b c d e

x 0 0 0 0 0
y 0 0 0 0 0
z 0 0 0 0 0

5.3.2 Les clés hvlines et hvlines-except-borders

La clé hvlines , qui ne prend pas de valeur, est la conjonction des clés hlines et vlines.
\begin{NiceTabular}{cccc}[hvlines,rules/color=blue,rules/width=1pt]
rose & tulipe & marguerite & dahlia \\
violette & \Block[draw=red]{2-2}{\LARGE fleurs} & & souci \\
pervenche & & & lys \\
arum & iris & jacinthe & muguet
\end{NiceTabular}

rose tulipe marguerite dahlia
violette souci

pervenche lys
arum iris jacinthe muguet

fleurs

On remarquera que quand la clé rounded-corners est utilisée pour l’environnement {NiceTabular},
la clé hvlines trace des coins arrondis pour le tableau : cf. partie 14.1, p. 51.

La clé hvlines-except-borders est similaire à la clé hvlines mais ne trace pas les filets sur les
bords horizontaux et verticaux du tableau. Pour un exemple d’utilisation de cette clé, voir la partie
« Exemple d’utilisation avec tcolorbox » p. 65.

5.3.3 Les coins (vides)

Les quatre coins d’un tableau seront notés NW, SW, NE et SE (north west, south west, north east et
south east en anglais).
Pour chacun de ces coins, on appellera coin vide (ou tout simplement coin) la réunion de toutes les
cases vides situées dans au moins un rectangle entièrement constitué de cases vides partant de ce
coin.22

On peut néanmoins imposer à une case sans contenu d’être considérée comme non vide par nicematrix
avec la commande \NotEmpty.

Dans l’exemple ci-contre (où B est au centre d’un \Block
de taille 2 × 2), on a colorié en bleu clair les quatre coins
(vides) du tableau.

A
A A A

A
A A A A

A A A A A A
A A A A A A

A A A
A
A

B

Quand la clé corners23 est utilisée, nicematrix calcule les coins vides et ces coins sont alors pris en
compte par les outils de tracés de filets (les filets ne seront pas tracés dans ces coins vides).

22Pour être complet, on doit préciser que toute case située dans un bloc (même si elle est vide) n’est pas prise en
compte pour la détermination des coins. Ce comportement est naturel. La définition précise de ce qui est considéré
comme une « case vide » est donnée plus loin (cf. p. 62).

23La clé corners dont on parle là n’a pas de rapport direct avec la clé rounded-corners, décrite dans la partie 14.1,
p. 51.

16

\NiceMatrixOptions{cell-space-top-limit=3pt}
\begin{NiceTabular}{*{6}{c}}[corners,hvlines]
 & & & & A \\
 & & A & A & A \\
 & & & A \\
 & & A & A & A & A \\
A & A & A & A & A & A \\
A & A & A & A & A & A \\
 & A & A & A \\
 & \Block{2-2}{B} & & A \\
 & & & A \\
\end{NiceTabular}

A
A A A

A
A A A A

A A A A A A
A A A A A A

A A A
A
A

B

On peut aussi donner comme valeur à la clé corners une liste de coins à prendre en considération
(les coins sont notés NW, SW, NE et SE et doivent être séparés par des virgules).

\NiceMatrixOptions{cell-space-top-limit=3pt}
\begin{NiceTabular}{*{6}{c}}[corners=NE,hvlines]
1\\
1&1\\
1&2&1\\
1&3&3&1\\
1&4&6&4&1\\
 & & & & &1
\end{NiceTabular}

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

1

. Les coins sont également pris en compte par les outils de coloriage dans le \CodeBefore. Ces outils
ne colorient pas les cases qui sont dans les coins (cf. p. 21). La commande \TikzEveryCell disponible
dans le \CodeAfter et le \CodeBefore (cf. p. 46) tient également compte des coins.

5.3.4 La commande \diagbox

La commande \diagbox (inspirée par l’extension diagbox) permet, quand elle est utilisée dans une
case, de couper cette case selon une diagonale descendante.

$\begin{NiceArray}{*{5}{c}}[hvlines]
\diagbox{x}{y} & e & a & b & c \\
e & e & a & b & c \\
a & a & e & c & b \\
b & b & c & e & a \\
c & c & b & a & e
\end{NiceArray}$

e a b c
e e a b c
a a e c b
b b c e a
c c b a e

x
y

Cette commande \diagbox peut aussi être utilisée dans un \Block.

$\begin{NiceArray}{*{5}{c}}[hvlines]
\Block{2-2}{\diagbox{x}{y}} & & a & b & c \\
 & & a & b & c \\
a & a & e & c & b \\
b & b & c & e & a \\
c & c & b & a & e
\end{NiceArray}$

a b c
a b c

a a e c b
b b c e a
c c b a e

x

y

Mais on peut aussi utiliser \diagbox uniquement pour le trait diagonal et placer les labels comme
habituellement.

17

$\begin{NiceArray}{*{5}{c}}[hvlines]
\Block{2-2}{\diagbox{}{}} & y & a & b & c \\
x & & a & b & c \\
a & a & e & c & b \\
b & b & c & e & a \\
c & c & b & a & e
\end{NiceArray}$

y a b c
x a b c
a a e c b
b b c e a
c c b a e

Il est de toutes manières toujours possible de tracer tous les traits souhaités avec TikZ dans le
\CodeAfter (ou le \CodeBefore) en utilisant les nœuds PGF-TikZ créés par nicematrix : cf. p. 56.

5.3.5 Commandes pour filets personnalisés

Il est en fait possible de définir des commandes et des lettres pour des filets personnalisés avec la clé
custom-line , utilisable dans \NiceMatrixOptions ou bien dans un environnement. Cette clé prend
en argument une liste de paires de la forme clé=valeur. Il y a d’abord trois clés pour spécifier les
outils qui permettront d’utiliser ce nouveau type de filet.

• la clé command indique le nom (avec ou sans la contre-oblique) d’une commande qui sera créée
par nicematrix et que l’utilisateur pourra utiliser pour tracer des filets horizontaux (de manière
similaire à \hline) ;

• la clé ccommand indique le nom (avec ou sans la contre-oblique) d’une commande qui sera créée
par nicematrix et que l’utilisateur pourra utiliser pour tracer des filets horizontaux partiels (de
manière similaire à \cline, d’où le nom ccommand) : l’argument de cette commande sera une
liste d’intervalles de colonnes spécifiés par la syntaxe i ou i-j ;24

• la clé letter prend en argument une lettre25 qui pourra être utilisée par l’utilisateur dans le
préambule d’un environnement à préambule (comme {NiceTabular}) pour spécifier un filet
vertical.

On traite maintenant de la description du filet elle-même. Les options qui suivent peuvent aussi s’uti-
liser dans l’argument optionnel d’une commande \Hline individuelle ou dans l’argument optionnel
d’un spécificateur « |» dans un préambule d’environnement.

Il y a trois possibilités.

• Première possibilité
Il est possible de spécifier des filets multiples, colorés avec une couleur entre les filets (comme
on peut le faire avec colortbl par exemple).

– la clé multiplicity indique le nombre de traits successifs qui seront tracés : par exemple,
une valeur de 2 va créer des filets doubles comme créés en standard par \hline\hline ou
bien || dans le préambule d’un environnement ;

– la clé color fixe la couleur des filets ;
– la clé sep-color fixe la couleur entre deux filets consécutifs (n’a d’intérêt que dans le cas

où la clé multiplicity est utilisée). Le nom de cette clé est inspirée par la commande
\doublerulesepcolor de colortbl.

Ce système permet en particulier de définir des commandes pour tracer des filets avec une
couleur spécifique (et ces filets respecteront les blocs et les coins comme les autres filets de
nicematrix).

24Il est recommandé de n’utiliser ces commandes qu’une seule fois par rangée car chaque utilisation crée un espace
vertical entre les rangées correspondant à la largeur totale du trait qui sera tracé. De toutes manières, on peut tracer
plusieurs filets avec une unique utilisation de la commande.

25Les lettres suivantes ne sont pas autorisées : lcrpmbVX|()[]!@<>

18

\begin{NiceTabular}{lcIcIc}[custom-line = {letter=I, color=blue}]
\hline
 & \Block{1-3}{dimensions} \\
 & L & l & h \\
\hline
Produit A & 3 & 1 & 2 \\
Produit B & 1 & 3 & 4 \\
Produit C & 5 & 4 & 1 \\
\hline
\end{NiceTabular}

L l H
Produit A 3 1 2
Produit B 1 3 4
Produit C 5 4 1

dimensions

La clé sep-color avec la valeur white peut être en particulier utile en cas de filet double au-
dessus d’une case colorée (pour éviter que la couleur ne s’applique aussi entre les deux filets).

\NiceMatrixOptions
 {
 custom-line =
 {
 command = \DoubleRule ,
 multiplicity = 2 ,
 sep-color = white
 }
 }

\begin{NiceTabular}{ccc}
un & deux & trois \\
\DoubleRule
quatre & \cellcolor{yellow} cinq & six \\
\end{NiceTabular}

un deux trois
quatre cinq six

• Deuxième possibilité
On peut utiliser la clé tikz (si TikZ est chargé, nicematrix ne chargeant par défaut que pgf).
Dans ce cas-là, le filet est tracé directement avec TikZ en utilisant comme paramètres la valeur
de la clé tikz qui doit être une liste de couples clé=valeur applicables à un chemin TikZ.
Par défaut, aucune réservation de place n’est faite pour le filet qui sera tracé avec TikZ. On peut
demander une réservation (horizontale pour un filet vertical et verticale pour un filet horizontal)
avec la clé total-width qui est donc en quelque sorte la largeur du filet qui sera tracé (cette
largeur n’est pas calculée à partir des caractéristiques fournies par la clé tikz).

Voici ce que l’on obtient avec la clé dotted de TikZ.
\NiceMatrixOptions
 {
 custom-line =
 {
 letter = I ,
 tikz = dotted ,
 total-width = \pgflinewidth
 }
 }

19

\begin{NiceTabular}{cIcIc}
un & deux & trois \\
quatre & cinq & six \\
sept & huit & neuf
\end{NiceTabular}

un deux trois
quatre cinq six
sept huit neuf

• Troisième possibilité : la clé dotted

Comme on le voit dans l’exemple précédent, les pointillés tracés par la clé dotted de TikZ ne
sont pas ronds. C’est pourquoi l’extension nicematrix propose dans la clé custom-line une clé
dotted qui va tracer des pointillés ronds. La valeur initiale de la clé total-width est, dans ce
cas-là, égale au diamètre des points (l’utilisateur peut quand même utiliser la clé total-width
pour en changer la valeur). Ces pointillés ronds sont aussi utilisés par nicematrix pour des lignes
en pointillés continues créées entre deux composantes de la matrice par \Cdots, \Vdots, etc.
(voir p. 33).

L’extension nicematrix prédéfinit en fait les commandes \hdottedline et \cdottedline et la
lettre « :» pour ces filets en pointillés.26

% déjà présent dans nicematrix.sty
\NiceMatrixOptions
 {
 custom-line =
 {
 letter = : ,
 command = hdottedline ,
 ccommand = cdottedline ,
 dotted
 }
 }

Il est donc possible d’utiliser les commandes \hdottedline et \cdottedline pour tracer des
filets horizontaux en pointillés.

\begin{pNiceMatrix}
1 & 2 & 3 & 4 & 5 \\
\hdottedline
6 & 7 & 8 & 9 & 10 \\
\cdottedline{1,4-5}
11 & 12 & 13 & 14 & 15
\end{pNiceMatrix}

 1 2 3 4 5

6 7 8 9 10

11 12 13 14 15



Dans les environnements avec un préambule explicite (comme {NiceTabular}, {NiceArray},
etc.), il est possible de dessiner un trait vertical en pointillés avec le spécificateur « :».

\begin{pNiceArray}{cccc:c}
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15
\end{pNiceArray}

 1 2 3 4 5
6 7 8 9 10
11 12 13 14 15



26Néanmoins, l’utilisateur peut écraser ces définitions de \hdottedline, \cdottedline et de « : » avec custom-line
s’il le souhaite (par exemple pour les remplacer par des lignes en tiretés).

20

Comme on l’a dit, les clés précédentes peuvent être utilisés dans l’argument optionnel d’une com-
mande \Hline individuelle ou dans l’argument optionnel d’un spécificateur « |» dans un préambule
d’environnement (par exemple pour {NiceTabular}).
Mais dans ces cas-là, il est aussi possible d’utiliser deux clés supplémentaires, start et end , qui
indiquent les numéros de rangées ou de colonnes des extrémités du filet.

\begin{NiceTabular}{cc|[color=blue,start=2]ccc}
un & deux & trois & quatre
\Hline[start=2,end=3]
cinq & six & sept & huit \\
neuf & dix & onze & douze
\end{NiceTabular}

un deux trois quatre
cinq six sept huit
neuf dix onze douze

6 Les couleurs de fond des rangées et des colonnes

6.1 Utilisation de colortbl
Rappelons que l’extension colortbl peut être chargée directement par \usepackage{colortbl} ou en
chargeant l’extension xcolor avec l’option table : \usepackage[table]{xcolor}.

Il y a néanmoins deux inconvénients :

• L’extension colortbl patche array, ce qui entraîne des incompatibilités (par exemple avec la
commande \hdotsfor).

• L’extension colortbl construit le tableau rangée par rangée, en alternant rectangles colorés, filets
et contenu des cases. Le pdf résultant déroute certains lecteurs de pdf et on a parfois des
artefacts d’affichage.

– Certains filets semblent disparaître. Ce phénomène est dû au fait que les lecteurs de PDF
donnent souvent la priorité aux éléments graphiques qui ont été tracés postérieurement
(conformément à l’esprit du « modèle du peintre » de PostScript et PDF). De ce point de
vue, MuPDF (qui est utilisé par exemple par SumatraPDF) donne de meilleurs résultats
que Adobe Reader.

– Une fine ligne blanche semble apparaître entre deux cases de même couleur. Ce phénomène
se produit quand chaque case est coloriée avec sa propre instruction fill (opérateur fill
de PostScript noté f en PDF). C’est le cas avec colortbl avec lequel chaque case est coloriée
individuellement, même si on utilise \columncolor ou \rowcolor.
Concernant ce phénomène, Adobe Reader donne de meilleurs résultats que MuPDF (les
versions récentes de MuPDF semblent avoir résolu ce problème).

L’extension nicematrix propose des outils qui permettent d’éviter ces inconvénients.

6.2 Les outils de nicematrix dans le \CodeBefore

L’extension nicematrix propose des outils pour tracer d’abord les rectangles colorés, puis le contenu
des cases et les filets. Cette manière de faire est plus dans l’esprit du « modèle du peintre » des formats
PostScript et pdf et convient donc mieux aux lecteurs de pdf. L’inconvénient est qu’elle nécessite
plusieurs compilations successives.27

L’extension nicematrix fournit une clé code-before pour du code qui sera exécuté avant le tracé du
tableau. Une syntaxe alternative est proposée : on peut placer le contenu de ce code-before entre
les mots-clés \CodeBefore et \Body juste au début de l’environnement.

27Si vous utilisez Overleaf, Overleaf effectue automatiquement un nombre de compilations suffisant (en utilisant
latexmk).

21

\begin{pNiceArray}{preamble}
\CodeBefore [options]
 instructions du code-before
\Body
 contenu de l’environnement
\end{pNiceArray}
L’argument optionnel entre crochets est une liste de couples clé=valeur qui seront présentées au
fur et à mesure (les clés disponibles sont create-cell-nodes, sub-matrix (et ses sous-clés) et
delimiters/color).
De nouvelles commandes sont disponibles dans ce \CodeBefore : \cellcolor, \rectanglecolor,
\rowcolor, \columncolor, \rowcolors, \rowlistcolors, \chessboardcolors et \arraycolor.28

Les noms de certaines de ces commandes sont inspirés des noms des commandes de colortbl.

Ces commandes ne colorient pas les cases qui se trouvent dans les « coins » si la clé corners a été
utilisée. La description de cette clé a été faite p. 16.

Ces commandes respectent les coins arrondis si la clé rounded-corners (décrite à la partie 14.1,
p. 51) a été utilisée.

Toutes ces commandes acceptent un argument optionnel, entre crochets et en première position. Cet
argument optionel peut contenir deux éléments (séparés par une virgule) :

• le modèle colorimétrique (RGB, rgb, HTML, etc.) comme spécifié par l’extension xcolor ;

• une spécification d’opacité selon la forme opacity = valeur.29

On détaille maintenant ces différentes commandes.

• La commande \cellcolor tient son nom de la commande \cellcolor de colortbl.
Elle prend en arguments obligatoires une couleur et une liste de cases sous le format i-j où i
est le numéro de rangée et j le numéro de colonne. Malgré son nom, elle peut aussi colorier une
rangée avec la syntaxe i- ou bien une colonne avec la syntaxe -j.

\begin{NiceTabular}{ccc}[hvlines]
\CodeBefore
 \cellcolor[HTML]{FFFF88}{3-1,2-2,-3}
\Body
a & b & c \\
e & f & g \\
h & i & j \\
\end{NiceTabular}

a b c
e f g
h i j

• La commande \rectanglecolor prend trois arguments obligatoires. Le premier est la couleur,
les deux suivants fournissent la case en haut à gauche et la case en bas à droite du rectangle.

\begin{NiceTabular}{ccc}[hvlines]
\CodeBefore
 \rectanglecolor{blue!15}{2-2}{3-3}
\Body
a & b & c \\
e & f & g \\
h & i & j \\
\end{NiceTabular}

a b c
e f g
h i j

28On pourra remarquer que, dans le \CodeBefore, des nœuds PGF-TikZ de la forme (i-|j) correspondant à la
position des filets éventuels sont également accessibles : cf. p. 59.

29Attention : cette fonctionnalité génère des instructions de transparence dans le pdf résultant et certains lecteurs
de pdf n’acceptent pas la transparence. L’application de l’opacité est faite par \pgfsetfillopacity.

22

• La commande \arraycolor prend en argument obligatoire une couleur et colorie tout le tableau
(sauf les éventuelles rangées et colonnes extérieures : cf. p. 31) avec cette couleur. Ce n’est qu’un
cas particulier de la commande \rectanglecolor.

• La commande \chessboardcolors prend en arguments obligatoires deux couleurs et colorie
les cases en quinconces avec les deux couleurs.

$\begin{pNiceMatrix}[r,margin]
\CodeBefore
 \chessboardcolors{red!15}{blue!15}
\Body
1 & -1 & 1 \\
-1 & 1 & -1 \\
1 & -1 & 1
\end{pNiceMatrix}$

 1 −1 1
−1 1 −1
1 −1 1



On a utilisé la clé r qui impose que toutes les colonnes soient alignées à droite (cf. p. 52).

• La commande \rowcolor doit son nom à la commande \rowcolor de colortbl. Son premier
argument obligatoire est la couleur et le deuxième est une liste de numéros de rangées ou bien
d’intervalles de rangées sous la forme a-b (un intervalle de la forme a- représente toutes les
rangées à partir de la rangée a).

$\begin{NiceArray}{lll}[hvlines]
\CodeBefore
 \rowcolor{red!15}{1,3-5,8-}
\Body
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3 \\
a_4 & b_4 & c_4 \\
a_5 & b_5 & c_5 \\
a_6 & b_6 & c_6 \\
a_7 & b_7 & c_7 \\
a_8 & b_8 & c_8 \\
a_9 & b_9 & c_9 \\
a_{10} & b_{10} & c_{10} \\
\end{NiceArray}$

a1 b1 c1
a2 b2 c2
a3 b3 c3
a4 b4 c4
a5 b5 c5
a6 b6 c6
a7 b7 c7
a8 b8 c8
a9 b9 c9
a10 b10 c10

• La commande \columncolor doit son nom à la commande \columncolor de colortbl. Sa syntaxe
est similaire à celle de \rowcolor.

• La commande \rowcolors (avec un s) doit son nom à la commande \rowcolors de colortbl. Le
s rappelle qu’il y a deux couleurs. Elle colorie alternativement les rangées avec les deux couleurs
à partir de la rangée dont le numéro est donné en premier argument (obligatoire), comme le
fait la commande \rowcolors de xcolor. L’un des deux arguments de couleur peut être vide (et
alors aucune couleur n’est appliquée dans les rangées correspondantes).
En fait, le premier argument (obligatoire) peut, plus généralement, contenir une liste d’inter-
valles correspondant à l’ensemble des rangées sur lesquelles portera l’effet de \rowcolors (un
intervalle de la forme i désigne en fait l’intervalle constitué de toutes les rangées du tableau à
partir de la rangée i).

La commande \rowcolors accepte une liste de couples clé=valeur comme argument optionnel
en dernière position (l’argument optionnel en première position correspond à l’espace colorimé-
trique). Les clés disponibles sont cols, restart et respect-blocks.

– La clé cols décrit un ensemble de colonnes sur lesquelles portera l’effet de \rowcolors.
Cet ensemble de colonnes est une liste d’intervalles de la forme i-j (où i et j peuvent être
remplacés par *).

23

– Avec la clé restart , chacun des intervalles de rangées spécifié par le premier argument de
\rowcolors recommence avec la même couleur.30

– Avec la clé respect-blocks , qui est de type booléen, les « rangées » colorées alternati-
vement peuvent s’étendre sur plusieurs rangées réelles du tableau pour englober les blocs
(créés par la commande \Block : cf. p. 6).

\begin{NiceTabular}{clr}[hvlines]
\CodeBefore
 \rowcolors[gray]{2}{0.8}{}[cols=2-3,restart]
\Body
\Block{1-*}{Résultats} \\
\Block{2-1}{A}& Pierre & 12 \\
 & Jacques & 8 \\
\Block{4-1}{B}& Stéphanie & 18 \\
 & Amélie & 20 \\
 & Henri & 14 \\
 & Estelle & 15
\end{NiceTabular}

Pierre 12
Jacques 8
Stéphanie 18
Amélie 20
Henri 14
Estelle 15

Résultats

A

B

\begin{NiceTabular}{lr}[hvlines]
\CodeBefore
 \rowcolors{1}{blue!10}{}[respect-blocks]
\Body
\Block{2-1}{Pierre} & 12 \\
 & 13 \\
Jacques & 8 \\
\Block{3-1}{Stéphanie} & 18 \\
 & 17 \\
 & 15 \\
Amélie & 20 \\
Henri & 14 \\
\Block{2-1}{Estelle} & 15 \\
 & 19
\end{NiceTabular}

12
13

Jacques 8
18
17
15

Amélie 20
Henri 14

15
19

Pierre

Stéphanie

Estelle

• L’extension nicematrix propose aussi une commande \rowlistcolors . Cette commande généra-
lise la commande \rowcolors : au lieu de prendre deux arguments successifs pour les couleurs,
elle prend un seul argument qui est une liste de couleurs séparées par des virgules. Dans cette
liste, le symbole = représente une couleur identique à la précédente.

\begin{NiceTabular}{c}
\CodeBefore
 \rowlistcolors{1}{red!15,blue!15,green!15}
\Body
Mathilde \\
Pierre \\
Paul \\
Amélie \\
Jacques \\
Antoine \\
Stéphanie \\
\end{NiceTabular}

Mathilde
Pierre
Paul

Amélie
Jacques
Antoine

Stéphanie

30Autrement, la couleur d’une rangée ne dépend que de la parité de son numéro absolu.

24

On peut aussi utiliser dans la commande \rowlistcolors une série de couleurs définie par la
commande \definecolorseries de xcolor (et initialisée avec \resetcolorseries31).

\begin{NiceTabular}{c}
\CodeBefore
 \definecolorseries{BlueWhite}{rgb}{last}{blue}{white}
 \resetcolorseries{\value{iRow}}{BlueWhite}
 \rowlistcolors{1}{BlueWhite!!+}
\Body
Mathilde \\
Pierre \\
Paul \\
Amélie \\
Jacques \\
Antoine \\
Stéphanie \\
\end{NiceTabular}

Mathilde
Pierre
Paul

Amélie
Jacques
Antoine

Stéphanie

On rappelle que toutes les commandes de coloriage que l’on vient de décrire ne colorient pas les
cases qui sont dans les « coins ». Dans l’exemple suivant, on utilise la clé corners pour demander de
considérer le coin north east (NE).

\begin{NiceTabular}{cccccc}
 [corners=NE,margin,hvlines,first-row,first-col]
\CodeBefore
 \rowlistcolors{1}{blue!15, }
\Body
 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0 & 1 \\
1 & 1 & 1 \\
2 & 1 & 2 & 1 \\
3 & 1 & 3 & 3 & 1 \\
4 & 1 & 4 & 6 & 4 & 1 \\
5 & 1 & 5 & 10 & 10 & 5 & 1 \\
6 & 1 & 6 & 15 & 20 & 15 & 6 & 1 \\
\end{NiceTabular}

0 1 2 3 4 5 6
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1

L’exemple précédent utilise les clés first-row et first-col qui sont décrites dans la partie sur les
rangées et colonnes « extérieures » (cf. p. 31).
Comme on le voit, par défaut, les commandes de coloriage décrites précédemment ne s’appliquent pas
dans ces rangées et colonnes « extérieures ».
Mais on peut quand même colorier dans ces rangées et colonnes en donnant aux commandes précé-
dentes les numéros explicites de ces rangées et colonnes extérieures.
Dans l’exemple suivant, on demande explicitement le coloriage de la colonne 0 (qui est la « première
colonne » et qui existe du fait de la clé first-col).

31Pour l’initialisation, on a utilisé dans l’exemple qui suit le compteur LaTeX iRow (qui correspond en interne au
compteur TeX \c@iRow) qui, quand il est utilisé dans le \CodeBefore (ou le \CodeAfter) désigne le nombre de rangées
du tableau : cf p. 54. Cela permet un ajustement de la gradation des couleurs à la taille du tableau.

25

\begin{NiceTabular}{ccccccc}[corners=NE,margin,hvlines,first-row,first-col]
\CodeBefore
 \rowlistcolors{1}{blue!15, }
 \columncolor{red!15}{0}
\Body
 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0 & 1 \\
1 & 1 & 1 \\
2 & 1 & 2 & 1 \\
3 & 1 & 3 & 3 & 1 \\
4 & 1 & 4 & 6 & 4 & 1 \\
5 & 1 & 5 & 10 & 10 & 5 & 1 \\
6 & 1 & 6 & 15 & 20 & 15 & 6 & 1 \\
\end{NiceTabular}

0 1 2 3 4 5 6
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1

On remarquera que ces commandes sont compatibles avec les commandes de booktabs (\toprule,
\midrule, \bottomrule, etc). Néanmoins, l’extension booktabs n’est pas chargée par nicematrix.

\begin{NiceTabular}{lSSSS}
\CodeBefore
 \rowcolor{red!15}{1-2}
 \rowcolors{3}{blue!15}{}
\Body
\toprule
\Block[C]{2-1}{Produit} &
\Block{1-3}{dimensions (cm)} & & &
\Block{2-1}{\rotate Prix} \\
\cmidrule(rl){2-4}
 & L & l & h \\
\midrule
petit & 3 & 5.5 & 1 & 30 \\
moyen & 5.5 & 8 & 1.5 & 50.5 \\
premium & 8.5 & 10.5 & 2 & 80 \\
extra & 8.5 & 10 & 1.5 & 85.5 \\
spécial & 12 & 12 & 0.5 & 70 \\
\bottomrule
\end{NiceTabular}

L l h
petit 3 5.5 1 30
moyen 5.5 8 1.5 50.5
premium 8.5 10.5 2 80
extra 8.5 10 1.5 85.5
spécial 12 12 0.5 70

Produit
dimensions (cm)

Pr
ix

On a utilisé le type de colonne S de siunitx (qu’il faut avoir chargé).

On peut aussi, dans le \CodeBefore, utiliser les commandes \EmptyColumn et \EmptyRow . La com-
mande \EmptyColumn prend en argument une liste de numéros de colonnes et impose qu’aucun
coloriage ni tracé de filets n’aura lieu dans les colonnes correspondantes. La commande \EmptyRow
est similaire.
\begin{NiceTabular}{ccccc}[hvlines,no-cell-nodes]
\CodeBefore
 \rowcolor{blue!15}{1}
 \EmptyColumn{3}
\Body
 un & deux && trois & quatre \\
 un & \Block{}{deux\\ lignes} && trois & quatre \\
\end{NiceTabular}

un deux trois quatre

un trois quatredeux
lignes

6.3 Outils de coloriage en tableau

L’extension nicematrix propose aussi des commandes de coloriage à utiliser directement dans le tableau
(comme celles de l’extension colortbl).

26

Les commandes sont les suivantes (les trois premières sont inspirées par les commandes similaires de
colortbl).

• \cellcolor qui colorie la case courante32 ;

• \rowcolor à utiliser dans une case et qui colorie le reste de la rangée33 ;

• \columncolor à utiliser dans le préambule du tableau de la même manière que la commande
homonyme de colortbl (néanmoins, contrairement à la commande \columncolor de colortbl,
celle de nicematrix peut apparaître à l’intérieur d’une autre commande, elle-même utilisée dans
le préambule ; en revanche, elle ne prend pas les deux arguments optionnels à la fin entre crochets
pour du débord comme la commande de colortbl) ;

• \rowcolors qui prend pour arguments deux couleurs et colorie la suite du tableau avec ces
deux couleurs (à utiliser après un éventuel \hline, \Hline ou \toprule !) ;

• \rowlistcolors qui prend pour argument une liste de couleurs et colorie la suite du tableau
avec ces couleurs.34

Ces commandes sont compatibles avec les commandes pour les overlays de Beamer (comme \only,
etc.)

\NewDocumentCommand { \Blue } { } {\columncolor{blue!15}}
\begin{NiceTabular}{>{\Blue}c>{\Blue}cc}
\toprule
\rowcolor{red!15}
Nom & Prénom & Année de naissance \\
\midrule
Achard & Jacques & 5 juin 1962 \\
Lefebvre & Mathilde & 23 mai 1988 \\
Vanesse & Stéphanie & 30 octobre 1994 \\
Dupont & Chantal & 15 janvier 1998 \\
\bottomrule
\end{NiceTabular}

Nom Prénom Année de naissance
Achard Jacques 5 juin 1962

Lefebvre Mathilde 23 mai 1988
Vanesse Stéphanie 30 octobre 1994
Dupont Chantal 15 janvier 1998

Chaque utilisation de \rowlistcolors (et de \rowcolors qui en est un cas particulier) met un
terme aux éventuels schémas35 de coloriage en cours qui auraient été spécifiés par une commande
\rowlistcolors précédente.
En particulier, on peut engager un coloriage des rangées avec \rowlistcolors{...} et l’arrêter par
un \rowlistcolors{} avec argument vide.

32Cette commande \cellcolor supprimera les espaces qui la suivent (ce que ne fait pas la commande \cellcolor de
colortbl). De plus, si on définit une fonction au-dessus de \cellcolor, il faudra une fonction protégée au sens de TeX
(alors que si c’était la commande \cellcolor de colortbl, il faudrait au contaire une fonction fully expandable).

33Si vous souhaitez une commande pour colorier les n rangées suivantes, considérez la commande \RowStyle et sa clé
fill, p. 28.

34Quand la commande \rowlistcolors (ou la commande \rowcolors) est utilisée dans une case de la colonne j, le
coloriage ne s’applique que sur les colonnes au-delà de j (à dessein).

35On a écrit schémas au pluriel car on peut avoir plusieurs schémas en cours s’ils portent sur des colonnes différentes.

27

\begin{NiceTabular}{c}[hvlines]
un \\
deux \\
\rowlistcolors{red!15}
trois \\
quatre \\
cinq \\
\rowlistcolors{}
six \\
sept \\
\end{NiceTabular}

un
deux
trois

quatre
cinq
six

sept

6.4 La couleur spécial « nocolor »

L’extension nicematrix propose la couleur spéciale nocolor utilisable dans toutes les commandes de
coloriage fournies par nicematrix (dans le \CodeBefore ou bien dans le tableau proprement dit).
Les cases marquées par cette couleur ne seront pas coloriées, quelles que soient les autres commandes
de coloriage qui auraient pu s’appliquer à ces cases.
La couleur nocolor fournit donc un moyen commode de faire des exceptions à l’action d’une com-
mande de coloriage générale.

7 La commande \RowStyle

La commande \RowStyle prend en argument des instructions de mise en forme qui seront appliquées
à chacune des cases restantes sur la rangée en cours.

Elle prend aussi en premier argument optionnel, entre crochets, une liste de couples clé=valeur.

• La clé nb-rows indique le nombre de rangées consécutives concernées par les spécifications de
cette commande (une valeur * signifie que toutes les rangées restantes seront concernées).

• Les clés cell-space-top-limit , cell-space-bottom-limit et cell-space-limits sont dis-
ponibles avec le même effet que les clés globales de même nom (cf. p. 4).

• La clé fill (alias : rowcolor) fixe la couleur de fond et la clé opacity36 l’opacité de cette
couleur de fond. Si la clé rounded-corners est utilisée, ce fond aura des coins arrondis.

• La clé color fixe la couleur du texte.37

• La clé bold impose des caractères gras aux éléments de la rangée, qu’ils soient en mode texte
ou bien en mode mathématique.

\begin{NiceTabular}{cccc}
\hline
\RowStyle[cell-space-limits=3pt]{\rotate}
premier & deuxième & troisième & quatrième \\
\RowStyle[nb-rows=2,color=white,fill=blue!50]{\sffamily}
1 & 2 & 3 & 4 \\
I & II & III & IV
\end{NiceTabular}

pr
em

ie
r

de
ux

iè
m

e

tr
oi

siè
m

e

qu
at

riè
m

e

1 2 3 4
I II III IV

La commande \rotate est présentée p. 53.

36Attention : cette clé génère des instructions de transparence dans le pdf résultant et certains lecteurs de pdf
n’acceptent pas la transparence.

37La clé color utilise la commande \color mais insère aussi une instruction \leavevmode devant. Cela évite un espace
vertical parasite dans les cases qui correspondent à des colonnes de type p, b, m, et X (qui débutent en mode vertical
de LaTeX). Pour les colonnes de type V (de varwidth), cela ne suffit malheureusement pas sauf si on utilise LuaLaTeX
avec luacolor (cf. question 460489 sur TeX StackExchange).

28

8 La largeur des colonnes

8.1 Techniques de base

Dans les environnements avec un préambule explicite (comme {NiceTabular}, {NiceArray}, etc.),
il est possible de fixer la largeur d’une colonne avec les lettres classiques w, W, p, b et m de l’extension
array (qui est chargée par nicematrix).

\begin{NiceTabular}{W{c}{2cm}cc}[hvlines]
Paris & New York & Madrid \\
Berlin & London & Roma \\
Rio & Tokyo & Oslo
\end{NiceTabular}

Paris New York Madrid
Berlin London Roma

Rio Tokyo Oslo

Dans les environnements de nicematrix, il est aussi possible de fixer la largeur minimale de toutes
les colonnes (à l’exception des éventuelles colonnes extérieures : cf. p. 31) directement avec l’option
columns-width .

$\begin{pNiceMatrix}[columns-width = 1cm]
1 & 12 & -123 \\
12 & 0 & 0 \\
4 & 1 & 2
\end{pNiceMatrix}$

 1 12 −123
12 0 0
4 1 2


Notez que l’espace inséré entre deux colonnes (égal à 2 \tabcolsep dans {NiceTabular} et à 2
\arraycolsep dans les autres environnements) n’est pas supprimé (il est évidemment possible de le
supprimer en mettant \tabcolsep ou \arraycolsep à 0 avant).

Il est possible de donner la valeur spéciale auto à l’option columns-width : toutes les colonnes du
tableau auront alors une largeur égale à la largeur de la case la plus large du tableau.38

$\begin{pNiceMatrix}[columns-width = auto]
1 & 12 & -123 \\
12 & 0 & 0 \\
4 & 1 & 2
\end{pNiceMatrix}$

 1 12 −123
12 0 0
4 1 2


Sans surprise, il est possible de fixer la largeur minimale de toutes les colonnes de tous les tableaux
dans une certaine portion de document avec la commande \NiceMatrixOptions.

\NiceMatrixOptions{columns-width=10mm}
$\begin{pNiceMatrix}
a & b \\ c & d
\end{pNiceMatrix}
=
\begin{pNiceMatrix}
1 & 1245 \\ 345 & 2
\end{pNiceMatrix}$

(
a b
c d

)
=

(
1 1245

345 2

)

Mais il est aussi possible de fixer une zone dans laquelle toutes les matrices auront leurs colonnes
de la même largeur, égale à la largeur de la case la plus large de toutes les matrices de la zone.
Cette construction utilise l’environnement {NiceMatrixBlock} avec l’option auto-columns-width39.
L’environnement {NiceMatrixBlock} n’a pas de rapport direct avec la commande \Block présentée
précédemment dans ce document (cf. p. 6).

38Le résultat est atteint dès la première compilation (mais PGF-TikZ écrivant des informations dans le fichier aux,
un message demandant une deuxième compilation apparaîtra).

39Pour le moment, c’est le seul usage de l’environnement {NiceMatrixBlock} mais il pourrait y en avoir davantage
dans le futur.

29

\begin{NiceMatrixBlock}[auto-columns-width]
$\begin{array}{c}
\begin{bNiceMatrix}
 9 & 17 \\ -2 & 5
 \end{bNiceMatrix} \\ \\
\begin{bNiceMatrix}
 1 & 1245345 \\ 345 & 2
\end{bNiceMatrix} \\
\end{array}$
\end{NiceMatrixBlock}

[
9 17
−2 5

]
[

1 1245345
345 2

]

8.2 Les colonnes V de varwidth
Rappelons d’abord le fonctionnement d’un environnement {varwidth} de l’extension éponyme var-
width. Un tel environnement est similaire à l’environnement classique {minipage} mais la largeur
indiquée (en argument) n’est que la largeur maximale de la boîte créée. Dans le cas général, la largeur
d’une boîte {varwidth} est la largeur naturelle de son contenu.
Cela est illustré avec les exemples suivants :

\fbox{%
\begin{varwidth}{8cm}
\begin{itemize}
\item premier item
\item deuxième item
\end{itemize}
\end{varwidth}}

• premier item

• deuxième item

\fbox{%
\begin{minipage}{8cm}
\begin{itemize}
\item premier item
\item deuxième item
\end{itemize}
\end{minipage}}

• premier item

• deuxième item

L’extension varwidth définit également le type de colonne V. Une colonne V{〈dim〉} encapsule toutes
ses cases dans une {varwidth} d’argument 〈dim〉 (et effectue quelques réglages supplémentaires).

Lorsque l’extension varwidth est chargée, ces colonnes V de varwidth sont prises en charge par nicema-
trix.

\begin{NiceTabular}[corners=NW,hvlines]{V{3cm}V{3cm}V{3cm}}
& un texte & un très très très très long texte \\
un très très très très long texte \\
un très très très très long texte
\end{NiceTabular}

un texte un très très très très
long texte

un très très très très
long texte
un très très très très
long texte

Dans le cadre de nicematrix, l’un des intérêts des colonnes de type V par rapport aux colonnes de type
p, m ou b est que, pour les cases d’une telle colonne, le nœud PGF-TikZ créé pour le contenu d’une
telle case a une largeur ajustée au contenu de la case en question : cf. p. 57.

Les colonnes V de nicematrix acceptent les clés t, p, m, b, l, c et r proposées par les colonnes X : voir
leur description à la section 8.3, p. 31.

30

Remarquons que l’extension varwidth a quelques problèmes (au moins dans sa version 0.92). Par
exemple, avec LuaLaTeX, elle ne fonctionne pas si le contenu commence par une instruction \color.
De plus, varwidth doit être chargée après l’extension array (elle-même chargée par nicematrix).

8.3 Les colonnes X

L’environnement {NiceTabular} propose aussi des colonnes X similaires à celles proposées par l’en-
vironnement {tabularx} de l’extension éponyme.
La valeur requise par la largeur du tableau peut être passée en argument de la clé width (dans
{NiceTabular} ou dans \NiceMatrixOptions). La valeur initiale de ce paramètre est \linewidth
(et non \textwidth).
Pour se rapprocher davantage de l’environnement {tabularx}, nicematrix propose aussi un environ-
nement {NiceTabularX} avec une syntaxe similaire à celle de {tabularx}, c’est-à-dire que la largeur
voulue pour le tableau est spécifiée en premier argument (obligatoire).
Comme avec les extensions tabu40 et tabularray, le spécificateur X accepte entre crochets un argument
optionnel qui est une liste de clés.

• On peut spécifier un poids pour la colonne en mettant directement un nombre positif comme
argument du spécificateur X. Par exemple, une colonne X[2] aura une largeur double de celle
d’une colonne X (qui a un poids de 1).41

• On peut spécifier l’alignement horizontal avec une des lettres l, c et r (qui insèrent respective-
ment \raggedright, \centering et \raggedleft suivi de \arraybackslash).42

• On peut spécifier l’alignement vertical avec l’une des lettres t (alias p), m et b (qui construisent
respectivement des colonnes de types p, m et b). La valeur initiale est t.

• Il est possible d’utiliser la clé V dans une colonne de type X. Quand cette clé est utilisée, la
colonne X se comporte en fait comme une colonne V de l’extension varwidth (que l’utilisateur
doit avoir chargée), ce qui fait que la largeur de la colonne calculée par le processus X devient
la largeur maximale de la colonne.

\begin{NiceTabular}[width=9cm]{X[c,m]X[0.5,c,m]}[hvlines]
Un texte relativement long qui tient sur plusieurs lignes. &
Un texte relativement long qui tient sur plusieurs lignes. \\
Un texte plus court. & Un texte plus court.
\end{NiceTabular}

Un texte relativement long qui
tient sur plusieurs lignes.

Un texte
relativement long

qui tient sur
plusieurs lignes.

Un texte plus court. Un texte plus
court.

9 Les rangées et colonnes extérieures

Les environnements de nicematrix permettent de composer des rangées et des colonnes « extérieures »
grâce aux options first-row , last-row , first-col et last-col . C’est particulièrement intéressant
pour les matrices (mathématiques).

40L’extension tabu est maintenant considérée comme obsolète.
41Les valeurs négatives pour les poids, comme proposées par tabu (maintenant obsolète), ne sont pas prises en charge

par nicematrix. Si une telle valeur est utilisée, une erreur sera levée.
42En fait, quand ragged2e est chargée, ce sont les commandes \RaggedRight, \Centering et \RaggedLeft de ragged2e

qui sont utilisées, pour un meilleur résultat.

31

Si elle est présente, la « première rangée » (extérieure) est numérotée par 0 (et non 1). Il en est de
même pour la « première colonne ».
$\begin{pNiceMatrix}[first-row,last-row,first-col,last-col,nullify-dots]
 & C_1 & \Cdots & & C_4 & \\
L_1 & a_{11} & a_{12} & a_{13} & a_{14} & L_1 \\
\Vdots & a_{21} & a_{22} & a_{23} & a_{24} & \Vdots \\
 & a_{31} & a_{32} & a_{33} & a_{34} & \\
L_4 & a_{41} & a_{42} & a_{43} & a_{44} & L_4 \\
 & C_1 & \Cdots & & C_4 &
\end{pNiceMatrix}$


C1 C4

L1 a11 a12 a13 a14 L1

a21 a22 a23 a24
a31 a32 a33 a34

L4 a41 a42 a43 a44 L4

C1 C4



Les lignes pointillées ont été tracées avec les outils qui seront présentés p. 33.

Il y a plusieurs remarques à formuler.

• Si on utilise un environnement avec préambule explicite ({NiceTabular}, {NiceArray} ou l’une
de ses variantes), on ne doit pas mettre dans ce préambule de spécification de colonne pour les
éventuelles première et dernière colonne : ce sera automatiquement (et nécessairement) une
colonne r pour la première colonne et une colonne l pour la dernière.43

• On peut se demander comment nicematrix détermine le nombre de rangées et de colonnes né-
cessaires à la composition de la « dernière rangée » et de la « dernière colonne ».

– Dans le cas d’un environnement avec préambule, comme {NiceTabular} ou {pNiceArray},
le nombre de colonnes se déduit évidemment du préambule.

– Dans le cas où l’option light-syntax (cf. p. 55) est utilisée, nicematrix profite du fait
que cette option nécessite de toutes manières le chargement complet du contenu de l’envi-
ronnement (d’où l’impossibilité de mettre du verbatim dans ce cas-là) avant composition
du tableau. L’analyse du contenu de l’environnement donne le nombre de rangées et de
colonnes.

– Dans les autres cas, nicematrix détermine le nombre de rangées et de colonnes à la première
compilation et l’écrit dans le fichier aux pour pouvoir l’utiliser à la compilation suivante.
Néanmoins, il est possible de donner le numéro de la dernière rangée et le numéro de
la dernière colonne en arguments des options last-row et last-col, ce qui permettra
d’accélérer le processus complet de compilation. C’est ce que nous ferons dans la suite.

On peut contrôler l’apparence de ces rangées et colonnes avec les options code-for-first-row ,
code-for-last-row , code-for-first-col et code-for-last-col . Ces options sont des listes de
tokens qui seront insérées au début de chaque case de la rangée ou de la colonne considérée.

\NiceMatrixOptions{code-for-first-row = \color{red},
 code-for-first-col = \color{blue},
 code-for-last-row = \color{green},
 code-for-last-col = \color{magenta}}
$\begin{pNiceArray}{cc|cc}[first-row,last-row=5,first-col,last-col,nullify-dots]
 & C_1 & \Cdots & & C_4 & \\
L_1 & a_{11} & a_{12} & a_{13} & a_{14} & L_1 \\

43Si on souhaite une colonne extérieure avec un autre type d’alignement, on aura intérêt à considérer la commande
\SubMatrix disponible dans le \CodeAfter et le \CodeBefore (cf. p. 42) ou bien voir à insérer des délimiteurs directement
dans le préambule du tableau (cf. p. 40).

32

\Vdots & a_{21} & a_{22} & a_{23} & a_{24} & \Vdots \\
\hline
 & a_{31} & a_{32} & a_{33} & a_{34} & \\
L_4 & a_{41} & a_{42} & a_{43} & a_{44} & L_4 \\
 & C_1 & \Cdots & & C_4 &
\end{pNiceArray}$


C1 C4

L1 a11 a12 a13 a14 L1

a21 a22 a23 a24
a31 a32 a33 a34

L4 a41 a42 a43 a44 L4

C1 C4


Remarques

• Comme on peut le voir dans l’exemple précédent, les filets horizontaux et verticaux ne s’étendent
pas dans les rangées et colonnes extérieures. Cette remarque s’applique aussi aux filets définis
par les outils de personnalisation de nicematrix (cf. la clé custom-line p. 18).

• Une spécification de couleur présente dans code-for-first-row s’applique à une ligne pointillée
tracée dans cette « première rangée » (sauf si une valeur a été donnée à xdots/color). Idem
pour les autres.

• Sans surprise, une éventuelle option columns-width (décrite p. 29) ne s’applique pas à la « pre-
mière colonne » ni à la « dernière colonne ».

• Pour des raisons techniques, il n’est pas possible d’utiliser l’option de la commande \\ après la
« première rangée » ou avant la « dernière rangée ». Le placement des délimiteurs serait erroné.
Pour contourner cette restriction, on pourra envisager d’utiliser la commande \SubMatrix dans
le \CodeAfter (cf. p. 42).

10 Les lignes en pointillés continues

À l’intérieur des environnements de l’extension nicematrix, de nouvelles commandes sont définies :
\Ldots , \Cdots , \Vdots , \Ddots et \Iddots . Ces commandes sont conçues pour être utilisées à la
place de \dots, \cdots, \vdots, \ddots et \iddots.44

Chacune de ces commandes doit être utilisée seule dans la case du tableau et elle trace une ligne en
pointillés entre les premières cases non vides45 situées de part et d’autre de la case courante. Bien
entendu, pour \Ldots et \Cdots, c’est une ligne horizontale ; pour \Vdots, c’est une ligne verticale et
pour \Ddots et \Iddots, ce sont des lignes diagonales. On peut changer la couleur d’une ligne avec
l’option color.46

\begin{bNiceMatrix}
a_1 & \Cdots & & & a_1 \\
\Vdots & a_2 & \Cdots & & a_2 \\
 & \Vdots & \Ddots[color=red] \\
\\
a_1 & a_2 & & & a_n
\end{bNiceMatrix}



a1 a1

a2 a2

a1 a2 an



Pour représenter la matrice nulle, on peut choisir d’utiliser le codage suivant :

44La commande \iddots, définie par nicematrix, est une variante de \ddots avec les points allant vers le haut. Si
mathdots est chargée, la version de mathdots est utilisée. Elle correspond à la commande \adots de unicode-math.

45La définition précise de ce qui est considéré comme une « case vide » est donnée plus loin (cf. p. 62).
46Il est aussi possible de changer la couleur de toutes ces lignes pointillées avec l’option xdots/color (xdots pour

rappeler que cela s’applique à \Cdots, \Ldots, \Vdots, etc.) : cf. p. 37.

33

\begin{bNiceMatrix}
0 & \Cdots & 0 \\
\Vdots & & \Vdots \\
0 & \Cdots & 0
\end{bNiceMatrix}

0 0

0 0


On peut néanmoins souhaiter une matrice plus grande. Habituellement, dans un tel cas, les utilisateurs
de LaTeX ajoutent une nouvelle ligne et une nouvelle colonne. Il est possible d’utiliser la même
méthode avec nicematrix :
\begin{bNiceMatrix}
0 & \Cdots & \Cdots & 0 \\
\Vdots & & & \Vdots \\
\Vdots & & & \Vdots \\
0 & \Cdots & \Cdots & 0
\end{bNiceMatrix}


0 0

0 0


Dans la première colonne de cet exemple, il y a deux instructions \Vdots mais, bien entendu, une
seule ligne en pointillés sera tracée.
En fait, dans cet exemple, il aurait été possible de tracer la même matrice plus rapidement avec le
codage suivant (parmi d’autres) :

\begin{bNiceMatrix}
0 & \Cdots & & 0 \\
\Vdots & & & \\
 & & & \Vdots \\
0 & & \Cdots & 0
\end{bNiceMatrix}


0 0

0 0


Il y a aussi d’autres moyens de changer la taille d’une matrice. On pourrait vouloir utiliser l’argument
optionnel de la commande \\ pour l’espacement vertical et la commande \hspace* dans une case
pour l’espacement horizontal.47

Toutefois, une commande \hspace* pourrait interférer dans la construction des lignes en pointillés.
C’est pourquoi l’extension nicematrix fournit une commande \Hspace qui est une variante de \hspace
transparente pour la construction des lignes en pointillés de nicematrix.

\begin{bNiceMatrix}
0 & \Cdots & \Hspace*{1cm} & 0 \\
\Vdots & & & \Vdots \\[1cm]
0 & \Cdots & & 0
\end{bNiceMatrix}


0 0

0 0



10.1 L’option xdots/nullify

Considérons la matrice suivante qui a été composée classiquement avec l’environnement {pmatrix}
de amsmath.
$A = \begin{pmatrix}
h & i & j & k & l & m \\
x & & & & & x
\end{pmatrix}$

A =

(
h i j k l m
x x

)

Si nous ajoutons des instructions \ldots dans la seconde rangée, la géométrie de la matrice est
modifiée.
$B = \begin{pmatrix}
h & i & j & k & l & m \\
x & \ldots & \ldots & \ldots & \ldots & x
\end{pmatrix}$

B =

(
h i j k l m
x x

)

47Dans nicematrix, il faut utiliser \hspace* et non \hspace car nicematrix utilise array. Remarquons aussi que l’on
peut également régler la largeur des colonnes en utilisant l’environnement {NiceArray} (ou une de ses variantes) avec
une colonne de type w ou W : cf. p. 29

34

Par défaut, avec nicematrix, si nous remplaçons {pmatrix} par {pNiceMatrix} et \ldots par \Ldots,
la géométrie de la matrice n’est pas changée.

$C = \begin{pNiceMatrix}
h & i & j & k & l & m \\
x & \Ldots & \Ldots & \Ldots & \Ldots & x
\end{pNiceMatrix}$

C =

(
h i j k l m
x x

)

On pourrait toutefois préférer la géométrie de la première matrice A et vouloir avoir la même géométrie
avec une ligne en pointillés continue dans la seconde rangée. C’est possible en utilisant l’option
xdots/nullify48 (et une seule instruction \Ldots suffit).

$D = \begin{pNiceMatrix}[xdots/nullify]
h & i & j & k & l & m \\
x & \Ldots & & & & x
\end{pNiceMatrix}$

D =

(
h i j k l m
x x

)

L’option xdots/nullify « smashe » les instructions \Ldots (et ses variantes) horizontalement mais
aussi verticalement.

Attention : la clé xdots/nullify a un nom qui peut prêter à confusion ; elle n’implique pas que la
ligne en pointillés ne sera pas tracée !

10.2 Les commandes \Hdotsfor et \Vdotsfor

Certaines personnes utilisent habituellement la commande \hdotsfor de l’extension amsmath pour
tracer des lignes en pointillés horizontales dans une matrice. Dans les environnements de nicematrix,
il convient d’utiliser \Hdotsfor à la place pour avoir les lignes en pointillés similaires à toutes celles
tracées par l’extension nicematrix.
Comme avec les autres commandes de nicematrix (comme \Cdots, \Ldots, \Vdots, etc.), la ligne en
pointillés tracée par \Hdotsfor s’étend jusqu’au contenu des cases de part et d’autre.

$\begin{pNiceMatrix}
1 & 2 & 3 & 4 & 5 \\
1 & \Hdotsfor{3} & 5 \\
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5
\end{pNiceMatrix}$


1 2 3 4 5
1 5
1 2 3 4 5
1 2 3 4 5


Néanmoins, si ces cases sont vides, la ligne en pointillés s’étend seulement dans les cases spécifiées
par l’argument de \Hdotsfor (par conception).

$\begin{pNiceMatrix}
1 & 2 & 3 & 4 & 5 \\
 & \Hdotsfor{3} \\
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5
\end{pNiceMatrix}$


1 2 3 4 5

1 2 3 4 5
1 2 3 4 5


Remarque : Contrairement à la commande \hdotsfor de amsmath, la commande \Hdotsfor est
utilisable même lorsque l’extension colortbl49 est chargée (néanmoins, dans le cadre de nicematrix,
le chargement de colortbl est déconseillé puisque nicematrix propose ses propres commandes pour le
coloriage des tableaux : cf. p. 21).

L’extension nicematrix propose aussi une commande \Vdotsfor similaire à \Hdotsfor mais traçant
des lignes verticales.

L’exemple suivant utilise à la fois \Hdotsfor et \Vdotsfor :

48Cette clé a un alias : nullify-dots .
49On rappelle que lorsque l’extension xcolor est chargée avec l’option table, l’extension colortbl est chargée.

35

\begin{bNiceMatrix}
C[a_1,a_1] & \Cdots & C[a_1,a_n]
 & \hspace*{20mm} & C[a_1,a_1^{(p)}] & \Cdots & C[a_1,a_n^{(p)}] \\
\Vdots & \Ddots & \Vdots
 & \Hdotsfor{1} & \Vdots & \Ddots & \Vdots \\
C[a_n,a_1] & \Cdots & C[a_n,a_n]
 & & C[a_n,a_1^{(p)}] & \Cdots & C[a_n,a_n^{(p)}] \\
\rule{0pt}{15mm}\NotEmpty & \Vdotsfor{1} & & \Ddots & & \Vdotsfor{1} \\
C[a_1^{(p)},a_1] & \Cdots & C[a_1^{(p)},a_n]
 & & C[a_1^{(p)},a_1^{(p)}] & \Cdots & C[a_1^{(p)},a_n^{(p)}] \\
\Vdots & \Ddots & \Vdots
 & \Hdotsfor{1} & \Vdots & \Ddots & \Vdots \\
C[a_n^{(p)},a_1] & \Cdots & C[a_n^{(p)},a_n]
 & & C[a_n^{(p)},a_1^{(p)}] & \Cdots & C[a_n^{(p)},a_n^{(p)}]
\end{bNiceMatrix}

C[a1, a1] C[a1, an] C[a1, a
(p)
1] C[a1, a

(p)
n]

C[an, a1] C[an, an] C[an, a
(p)
1] C[an, a

(p)
n]

C[a
(p)
1 , a1] C[a

(p)
1 , an] C[a

(p)
1 , a

(p)
1] C[a

(p)
1 , a

(p)
n]

C[a
(p)
n , a1] C[a

(p)
n , an] C[a

(p)
n , a

(p)
1] C[a

(p)
n , a

(p)
n]



10.3 Comment créer les lignes en pointillés de manière transparente

Si on a un document déjà tapé qui contient un grand nombre de matrices avec des points de suspension,
on peut souhaiter utiliser les lignes pointillées de nicematrix sans avoir à modifier chaque matrice. Pour
cela, nicematrix propose deux options renew-dots et renew-matrix.50

• L’option renew-dots

Avec cette option, les commandes \ldots, \cdots, \vdots, \ddots, \iddots44 et \hdotsfor
sont redéfinies dans les environnements de nicematrix et agissent alors comme \Ldots, \Cdots,
\Vdots, \Ddots, \Iddots et \Hdotsfor ; la commande \dots (points de suspension « automa-
tiques » de amsmath) est aussi redéfinie et se comporte comme \Ldots.

• L’option renew-matrix

Avec cette option, l’environnement {matrix} est redéfini et se comporte comme {NiceMatrix}
et il en est de même pour les cinq variantes.

Par conséquent, avec les options renew-dots et renew-matrix, un code classique donne directement
le résultat fourni par nicematrix.

\NiceMatrixOptions{renew-dots,renew-matrix}
\begin{pmatrix}
1 & \cdots & \cdots & 1 \\
0 & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1
\end{pmatrix}


1 1

0

0 0 1



50Comme toutes les autres options, les options renew-dots et renew-matrix peuvent être fixées avec la commande
\NiceMatrixOptions, mais ces deux options-là peuvent aussi être passées en option du \usepackage.

36

10.4 Les labels des lignes en pointillés

Les commandes \Ldots, \Cdots, \Vdots, \Ddots, \Iddots, \Hdotsfor et \Vdotsfor (ainsi que la
commande \line dans le \CodeAfter décrite p. 41) peuvent en fait prendre trois arguments optionnels
spécifiés par les caractères _, ^ et : pour des labels situés au-dessous, au-dessus, ou sur la ligne. Les
arguments sont composés en mode mathématique avec \scriptstyle.
Le label spécifié par le caractère « :» est en fait composé sur un fond blanc qui est superposé sur la
ligne en pointillés (voir un exemple p. 69).

$\begin{bNiceMatrix}
1 & \hspace*{1cm} & 0 \\[8mm]
 & \Ddots^{n \text{ fois}} & \\
0 & & 1
\end{bNiceMatrix}$


1 0

0 1


n

fois

Avec la clé horizontal-label , le label reste horizontal.

$\begin{bNiceMatrix}
1 & \hspace*{1cm} & 0 \\[8mm]
 & \Ddots[horizontal-label]^{n \text{ fois}} & \\
0 & & 1
\end{bNiceMatrix}$


1 0

0 1


n fois

10.5 Personnalisation des lignes en pointillés

Les lignes pointillées tracées par \Ldots, \Cdots, \Vdots, \Ddots, \Iddots, \Hdotsfor et \Vdotsfor
(ainsi que par la commande \line dans le \CodeAfter décrite p. 41) peuvent être paramétrées par
les options suivantes (que l’on met entre crochets après la commande) :

• horizontal-label(s) ;

• color ;

• radius ;

• shorten-start, shorten-end et shorten ;

• inter ;

• line-style.

Pour une commande individuelle, on peut utiliser horizontal-label au singulier.
Ces options peuvent aussi être fixées avec \NiceMatrixOptions ou bien au niveau d’un environnement
mais elles doivent alors être préfixées par xdots (xdots pour rappeler que cela s’applique à \Cdots,
\Ldots, \Vdots, etc.), ce qui fait que leurs noms deviennent :

• xdots/horizontal-labels ;

• xdots/color ;

• xdots/radius ;

• xdots/shorten-start, xdots/shorten-end et xdots/shorten ;

• xdots/inter ;

• xdots/line-style.

37

Pour la clarté, dans la suite, on utilisera ces noms-là.

La clé xdots/horizontal-labels demande que les labels (introduits par _, ^ et :) restent horizon-
taux.

L’option xdots/color indique bien entendu la couleur de la ligne tracée. On peut définir une couleur
« à la volée » (ex. : xdots/color = { [RGB]{204,204,255} }). On remarquera que les lignes tracées
dans les rangées et colonnes extérieures (décrites plus loin) bénéficient d’un régime spécial : cf. p. 31.

L’option radius correspond au rayon des points circulaires qui sont tracés. La valeur initiale est
0.53 pt.

Les clés xdots/shorten-start et xdots/shorten-end indiquent la marge qui est laissée aux deux
extrémités de la ligne. La clé xdots/shorten fixe les deux clés simultanément. La valeur initiale de
0.3 em (il est conseillé d’utiliser une unité de mesure dépendante de la fonte courante).51

L’option xdots/inter indique la distance entre deux points. La valeur initiale est 0.45 em (il est
conseillé d’utiliser une unité de mesure dépendante de la fonte courante).

L’option xdots/line-style
Il faut savoir que, par défaut, les lignes de TikZ tracées avec le paramètre dotted sont composées de
points carrés et non pas ronds.52

\tikz \draw [dotted] (0,0) -- (5,0) ;

Voulant proposer des lignes avec des points ronds dans le style de celui de \ldots (au moins celui des
fontes Computer Modern), l’extension nicematrix contient en interne son propre système de ligne en
pointillés (qui, au passage, n’utilise que pgf et non tikz). Ce style est appelé le style standard. Cette
valeur est la valeur initiale du paramètre xdots/line-style.

Néanmoins (quand TikZ est chargé), on peut utiliser pour xdots/line-style n’importe quel style
proposé par TikZ, c’est-à-dire n’importe quelle suite d’options TikZ applicables à un chemin (à
l’exception de « color», « shorten >» et « shorten <»).

Voici par exemple une matrice tridiagonale avec le style loosely dotted :

$\begin{pNiceMatrix}[xdots={nullify,line-style=loosely dotted}]
a & b & 0 & & \Cdots & 0 \\
b & a & b & \Ddots & & \Vdots \\
0 & b & a & \Ddots & & \\
 & \Ddots & \Ddots & \Ddots & & 0 \\
\Vdots & & & & & b \\
0 & \Cdots & & 0 & b & a
\end{pNiceMatrix}$ 

a b 0 0
b a b
0 b a

0
b

0 0 b a



10.6 Les lignes pointillées et les filets

Les lignes pointillées délimitent des blocs virtuels qui ont le même comportement vis à vis des filets
que les blocs créés par \Block (les filets spécifiés par le spécificateur | dans le préambule, la commande

51En fait, quand on utilise ces clés au niveau de \NiceMatrixOptions ou bien d’un environnement, seules les extrémités
des lignes qui s’arrêtent au niveau d’un contenu non vide de case sont concernées. Quand on les utilise sur une commande
\Cdots (ou \Vdots, etc.), toutes les extrémités sont concernées.

52La raison de départ est que le format pdf comporte un système de description de lignes en tiretés, qui, puisqu’il
est incorporé dans le pdf, est affiché très rapidement par les lecteurs de pdf. Il est facile à partir de ce type de ligne de
créer des lignes de points carrés alors qu’une ligne de points ronds doit être construite explicitement point par point.
Voir néanmoins à l’adresse suivante pour un moyen d’avoir un style de pointillés ronds avec TikZ :
https://tex.stackexchange.com/questions/52848

38

https://tex.stackexchange.com/questions/52848

\Hline, les clés vlines, hlines, hvlines et hvlines-except-borders et les outils créés par custom-
line ne sont pas tracés dans les blocs).53

$\begin{bNiceMatrix}[margin,hvlines]
\Block{3-3}<\LARGE>{A} & & & 0 \\
& \hspace*{1cm} & & \Vdots \\
& & & 0 \\
0 & \Cdots& 0 & 0
\end{bNiceMatrix}$


0

0
0 0 0

A



10.7 Les commandes \Hbrace et \Vbrace

Puisque, comme dit dans la partie précédente, il est possible d’utiliser, avec les commandes \Cdots,
\Ldots, \Vdots, etc. n’importe quel style de ligne fourni par TikZ, on peut envisager de tracer des
accolades avec la décoration brace fournie par la bibliothèque decorations.pathreplacing de TikZ.
Pour faciliter cet usage, nicematrix propose les deux commandes \Hbrace et \Vbrace . Celles-ci ne
sont disponibles que si TikZ, ainsi que sa bibliothèque decorations.pathreplacing, ont été chargées
(avant ou après le chargement de nicematrix). Si elles ne sont pas chargées, une erreur (non fatale)
sera levée.

\usepackage{tikz}
\usetikzlibrary{decorations.pathreplacing}

Les commandes \Hbrace et \Vbrace ont la même syntaxe. Elles prennent trois arguments :

• un premier argument optionnel (entre crochets) pour une liste de couples clé=valeur : les clés
autorisées sont color, horizontal-label, shorten, shorten-start et shorten-end.

Nouveau 7.5
Il existe aussi une clé brace-shift pour déplacer l’accolade (et son label) vers l’extérieur de
la matrice.

• un deuxième argument, obligatoire, qui est le nombre de colonnes (pour \Hbrace) ou de rangées
(pour \Vbrace) sur lesquelles l’accolade va s’étendre.

• un troisième argument, obligatoire, qui est le label de l’accolade.

Concernant la commande \Hbrace, son comportement vis à vis des esperluettes (&) est le même que
celui des commandes \multicolumn, \hdotsfor, \Hdotsfor (fournie par nicematrix), etc. : on ne doit
mettre qu’une seule esperluette après la commande, même si l’accolade s’étend sur plusieurs colonnes.

\usepackage{tikz} % dans le préambule
\usetikzlibrary{decorations.pathreplacing} % dans le préambule

$\begin{NiceArray}{ccccc}%
 [hvlines ,
 first-row ,
 last-row = 6,
 first-col ,
 last-col ,
 xdots/horizontal-labels]
& \Hbrace{3}{p} & \Hbrace[brace-shift=1mm]{2}{q} \\
\Vbrace{3}{p} & 1 & 1 & 134 & 1 & 1 & \Vbrace{3}{p} \\
& 1 & 1 & 134 & 1 & 1 \\
& 1 & 1 & 13456 & 1 & 1 \\
\Vbrace{2}{q} & 1 & 1 & 134 & 1 & 1 & \Vbrace{2}{q}\\
& 1 & 1 & 134 & 1 & 1 \\
& \Hbrace{3}{p} & \Hbrace[color=blue]{2}{q} \\
\end{NiceArray}$

1 1 134 1 1
1 1 134 1 1
1 1 13456 1 1
1 1 134 1 1
1 1 134 1 1

p q

p p

q q

p q

53En revanche, la commande \line dans le \CodeAfter (cf. p. 41) ne crée pas de bloc.

39

Le style TikZ utilisé par nicematrix pour tracer ces accolades est appelé nicematrix/brace . Voici la
valeur initiale de ce style :
decoration = { brace , raise = -0.15 em } ,
decorate
L’utilisateur final peut changer ce style TikZ à sa guise (en respectant la structure avec les clés
decorate et decoration).

Pour un autre exemple d’utilisation de \Hbrace et \Vbrace, voir la partie « Des lignes pointillées qui
ne sont plus pointillées », p. 68.

11 Délimiteurs dans le préambule de l’environnement

Pour les environnements à préambule ({NiceArray}, {pNiceArray}, etc.), il est possible de placer
des délimiteurs verticaux directement dans le préambule.54

Les délimiteurs ouvrants doivent être précédés du mot-clé \left et les délimiteurs fermants du mot-
clé \right . Les mots-clés \left et \right n’ont pas d’obligation à être utilisés par paires.
Tous les délimiteurs extensibles de LaTeX peuvent être utilisés.

Voici un exemple qui utilise \lgroup et \rgroup.

$\begin{NiceArray}{\left\lgroup ccc\right\rgroup l}
1 & 2 & 3 &
4 & 1 & 6 &
7 & 8 & 9 & \scriptstyle L_3 \gets L_3 + L_1 + L_2
\end{NiceArray}$ 1 2 3

4 1 6
7 8 9 L3←L3+L1+L2


Pour cet exemple, on aurait aussi pu utiliser {NiceArrayWithDelims} (cf. la partie 14.10, p. 55) et
la clé last-col (cf. p. 31).

Il y a un cas particulier : pour les délimiteurs (, [et \{55, et les délimiteurs fermants correspondants,
les préfixes \left et \right sont facultatifs.56

Voici un exemple avec un délimiteur \{ à gauche dans un {NiceTabular} (on remarquera la compa-
tibilité avec la clé t).

On définit f par\quad
\begin{NiceTabular}[t]{\{ll}
$f(x) = 0$ & si x est négatif \\
$f(x) = 1-e^x$ & si x est positif
\end{NiceTabular}

On définit f par
{
f(x) = 0 si x est négatif
f(x) = 1− ex si x est positif

Dans le cas de deux délimiteurs successifs (nécessairement un fermant suivi d’un ouvrant pour une
autre sous-matrice) un espace égal à \enskip est inséré automatiquement.

54Cette syntaxe est inspirée de l’extension blkarray.
55Pour les accolades, la protection par la contre-oblique est obligatoire (c’est pourquoi on a écrit \{).
56Pour les délimiteurs [et], les préfixes restent obligatoires en cas de conflit de notation avec des crochets d’options

de certains descripteurs de colonnes.

40

$\begin{pNiceArray}{(c)(c)(c)}
a_{11} & a_{12} & a_{13} \\
a_{21} & \displaystyle \int_0^1\dfrac{1}{x^2+1}\,dx & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pNiceArray}$ 

a11 a12 a13

a21

∫ 1

0

1

x2 + 1
dx a23

a31 a32 a33











Pour des constructions plus complexes, avec en particulier des délimiteurs ne couvrant pas toutes les
rangées, on aura intérêt à considérer la commande \SubMatrix disponible dans le \CodeAfter et le
\CodeBefore : voir la partie 12.2, p. 42.

12 Le \CodeAfter

On a présenté p. 22 la clé code-before. Il existe en fait une clé similaire code-after qui peut être
utilisée pour indiquer du code qui sera exécuté après la construction du tableau.

Pour améliorer la lisibilité du code, une syntaxe alternative est proposée : on peut spécifier les ins-
tructions du code-after à la fin de l’environnement, après le mot-clé \CodeAfter (la clé code-after
reste bien sûr obligatoire dans \AutoNiceMatrix et les commandes similaires). Bien que ce soit un
mot-clé, \CodeAfter accepte quand même un argument optionnel (entre crochets).57

Les utilisateurs expérimentés peuvent, en particulier, utiliser les nœuds PGF-TikZ créés par nicematrix
dans le \CodeAfter. Ces nœuds sont décrits à partir de la page 56.

Par ailleurs, plusieurs commandes spéciales sont disponibles dans le \CodeAfter : \line, \SubMatrix,
\OverBrace, \UnderBrace et \TikzEveryCell. On va maintenant détailler ces commandes.

On veillera à éviter les espaces parasites dans ce \CodeAfter.58

12.1 La commande \line dans le \CodeAfter

La commande \line permet de tracer directement des lignes en pointillés entre les cases. Elle prend
deux arguments correspondant aux cases ou blocs à relier. Chacun de ces deux arguments peut être :

• une spécification de case de la forme i-j où i est le numéro de rangée et j est le numéro de
colonne ;

• le nom d’un bloc (créé avec la commande \Block en utilisant la clé name de cette commande).

Les options disponibles pour personnaliser les lignes pointillées créées par \Cdots, \Vdots, etc.
peuvent aussi être passées à cette commande (cf. p. 37).

Cette commande peut par exemple être utilisée pour tracer une ligne entre deux cases adjacentes.

\NiceMatrixOptions{xdots/shorten = 0.6 em}
\begin{pNiceMatrix}
I & 0 & \Cdots & 0 \\
0 & I & \Ddots & \Vdots \\
\Vdots & \Ddots & I & 0 \\
0 & \Cdots & 0 & I
\CodeAfter \line{2-2}{3-3}
\end{pNiceMatrix}


I 0 0

0 I

I 0
0 0 I



57Les clés autorisées dans cet argument optionnel sont les suivantes : delimiters/color, rules et ses sous-clés, sub-
matrix (en lien avec la commande \SubMatrix) et ses sous-clés et xdots (pour la commande \line) et ses sous-clés.

58Voir https://tex.stackexchange.com/questions/52848

41

https://tex.stackexchange.com/questions/52848

Elle peut aussi être utilisée pour tracer une ligne diagonale non parallèle aux autres lignes diagonales
(par défaut, les lignes tracées par \Ddots sont « parallélisées » : cf. p. 62).

\begin{bNiceMatrix}
1 & \Cdots & & 1 & 2 & \Cdots & 2 \\
0 & \Ddots & & \Vdots & \Vdots & \hspace*{2.5cm} & \Vdots \\
\Vdots & \Ddots & & & & & \\
0 & \Cdots & 0 & 1 & 2 & \Cdots & 2
\CodeAfter \line[shorten=6pt]{1-5}{4-7}
\end{bNiceMatrix} 

1 1 2 2

0

0 0 1 2 2



12.2 La commande \SubMatrix dans le \CodeAfter (et le \CodeBefore)

La commande \SubMatrix permet de positionner des délimiteurs sur une partie du tableau, partie
qui est considérée comme une sous-matrice. La commande \SubMatrix prend cinq arguments :

• le premier argument est le délimiteur gauche qui peut être n’importe quel délimiteur extensible
de LaTeX : (, [, \{, \langle, \lgroup, \lfloor, etc. mais aussi le délimiteur nul . ;

• le deuxième argument est le coin supérieur gauche de la sous-matrice avec la syntaxe i-j où i
est le numéro de rangée et j le numéro de colonne (le spécificateur last est utilisable) ;

• le troisième argument est le coin inférieur droit avec la même syntaxe ;

• la quatrième argument est le délimiteur droit ;

• le cinquième argument, optionnel, entre crochets, est une liste de couples clé=valeur.59

On remarquera que la commande \SubMatrix trace les délimiteurs après la construction de la matrice :
aucun espace n’est inséré par la commande \SubMatrix. C’est pourquoi, dans l’exemple suivant, on
a utilisé la clé margin et on a inséré à la main de l’espace entre la troisième et la quatrième colonne
avec @{\hspace{1.5em}} dans le préambule du tableau.

\[\begin{NiceArray}{ccc@{\hspace{1.5em}}c}[cell-space-limits=2pt,margin]
 1 & 1 & 1 & x \\
\dfrac{1}{4} & \dfrac{1}{2} & \dfrac{1}{4} & y \\
 1 & 2 & 3 & z
\CodeAfter
 \SubMatrix({1-1}{3-3})
 \SubMatrix({1-4}{3-4})
\end{NiceArray}\]

1 1 1 x
1

4

1

2

1

4
y

1 2 3 z






En fait, dans cet exemple, il aurait sans doute été plus simple de mettre des délimiteurs directement
dans le préambule de l’environnement {NiceArray} (voir la section 11, p. 40) avec la construction
suivante.
$\begin{NiceArray}{(ccc)(c)}[cell-space-limits=2pt]
 1 & 1 & 1 & x \\
\dfrac{1}{4} & \dfrac{1}{2} & \dfrac{1}{4} & y \\
 1 & 2 & 3 & z
\end{NiceArray}$


1 1 1 x
1

4

1

2

1

4
y

1 2 3 z





59Il n’y a pas d’argument optionnel entre crochets en première position car un crochet ouvrant juste après \SubMatrix
doit pouvoir être interprété comme le premier argument (obligatoire) de \SubMatrix : ce crochet est alors le délimiteur
gauche de la sous-matrice (ex. : \SubMatrix[{2-2}{4-7}]).

42

La commande \SubMatrix accepte en fait également deux arguments optionnels spécifiés par les
symboles traditionnels ^ et _ pour des éléments en exposant et en indice (mais aucun espace n’est
réservé pour ces éléments).

$\begin{bNiceMatrix}[right-margin=1em]
1 & 1 & 1 \\
1 & a & b \\
1 & c & d
\CodeAfter
 \SubMatrix[{2-2}{3-3}]^{T}
\end{bNiceMatrix}$

1 1 1
1 a b
1 c d

[]T

Les clés disponibles pour la commande \SubMatrix sont les suivantes :

• left-xshift et right-xshift déplacent horizontalement les délimiteurs (il existe aussi la clé
xshift qui permet de régler simultanément ces deux clés) ;

• extra-height ajoute une quantité à la hauteur totale des délimiteurs (hauteur \ht + profon-
deur \dp) ;

• delimiters/color permet de fixer la couleur des délimiteurs (cette clé est également disponible
dans \NiceMatrixOptions et au niveau des environnements à délimiteurs ou comme option de
\CodeAfter) ;

• slim qui est une clé booléenne : lorsqu’elle est utilisée la position horizontale des délimiteurs est
calculée uniquement sur le contenu des cases de la sous-matrice alors, que, dans le cas général,
elle est calculée sur le contenu des cases des colonnes mises en jeu (voir exemple ci-dessous) ;

• vlines contient une liste de numéros de filets verticaux à tracer dans la sous-matrice (si cette
clé est utilisée sans valeur, tous les filets verticaux sont tracés) ;

• hlines est similaire à vlines mais pour les filets horizontaux ;

• hvlines , qui s’utilise sans valeur, trace tous les filets dans la sous-matrice ;

• code permet d’insérer du code, en particulier du code TikZ, après la construction de la matrice.
Cette clé est décrite en détail plus loin.

On remarquera que tous les filets sont dessinés après la construction du tableau principal : les colonnes
et les rangées ne sont pas écartées.

Ces clés sont aussi accessibles dans \NiceMatrixOptions, au niveau des environnements de nicematrix
ou comme option de \CodeAfter avec le préfixe sub-matrix, c’est-à-dire qu’elles sont alors nommées
sub-matrix/left-xshift, sub-matrix/right-xshift, sub-matrix/xshift, etc.

$\begin{NiceArray}{cc@{\hspace{5mm}}l}[cell-space-limits=2pt]
 & & \frac{1}{2} \\
 & & \frac{1}{4} \\[1mm]
a & b & \frac{1}{2}a+\frac{1}{4}b \\
c & d & \frac{1}{2}c+\frac{1}{4}d \\
\CodeAfter
 \SubMatrix({1-3}{2-3})
 \SubMatrix({3-1}{4-2})
 \SubMatrix({3-3}{4-3})
\end{NiceArray}$

1
2
1
4

a b 1
2a+ 1

4b

c d 1
2c+

1
4d

()
()()

Voici le même exemple avec la clé slim pour l’une des sous-matrices.

43

$\begin{NiceArray}{cc@{\hspace{5mm}}l}[cell-space-limits=2pt]
 & & \frac{1}{2} \\
 & & \frac{1}{4} \\[1mm]
a & b & \frac{1}{2}a+\frac{1}{4}b \\
c & d & \frac{1}{2}c+\frac{1}{4}d \\
\CodeAfter
 \SubMatrix({1-3}{2-3})[slim]
 \SubMatrix({3-1}{4-2})
 \SubMatrix({3-3}{4-3})
\end{NiceArray}$

1
2
1
4

a b 1
2a+ 1

4b

c d 1
2c+

1
4d

()
()()

Il existe aussi une clé name qui permet de donner un nom à une sous-matrice créée par une commande
\SubMatrix. Ce nom est utilisé pour créer des nœuds PGF-TikZ : voir p. 60.

La commande \SubMatrix est en fait aussi disponible dans le \CodeBefore. L’intérêt d’utiliser
\SubMatrix dans le \CodeBefore est que les délimiteurs tracés par ces commandes \SubMatrix
sont alors prises en compte pour limiter les lignes en pointillés continues (créées par \Cdots, \Vdots,
etc.) qui ont une extrémité ouverte.
Pour un exemple, voir 18.9 p. 76.

En dépit de son nom, la commande \SubMatrix peut également être utilisée dans {NiceTabular}
comme dans l’exemple suivant (qui utilise \bottomrule et \toprule de l’extension booktabs).
\begin{NiceTabular}{@{}ll@{}}
\toprule
Part A & the first part \\
\Block{2-1}{Part B} & a first sub-part \\
 & a second sub-part \\
\bottomrule
\CodeAfter
 \SubMatrix{\lbrace}{2-2}{3-2}{.}
\end{NiceTabular}

Part A the first part
a first sub-part
a second sub-partPart B

{

Attention : La fonctionnalité suivante est fragile et ne fonctionne pas avec latex–dvips–ps2pdf.
La clé code de la commande \SubMatrix permet d’insérer du code après la création de la matrice.
Elle a surtout pour vocation d’être utilisée pour insérer des instructions TikZ, sachant que, dans les
instructions TikZ insérées dans cette clé, les nœuds de la forme i-j.anchor ou i-|j sont interprétés
avec i et j étant des numéros de rangée et colonne relatifs à la sous-matrice.60

$\begin{NiceArray}{ccc@{}w{c}{5mm}@{}ccc}
 & & && -1 & 1 & 2 \\
 & & && 0 & 3 & 4 \\
 & & && 0 & 0 & 5 \\
 1 & 2 & 3 && -1 & 7 & 25 \\
 0 & 4 & 5 && 0 & 12 & 41 \\
 0 & 0 & 6 && 0 & 0 & 30
\CodeAfter
 \NewDocumentCommand{\MyDraw}{}{\tikz \draw [blue] (2-|1) -| (3-|2) -| (4-|3) ;}
 \SubMatrix({1-5}{3-7})[code = \MyDraw]
 \SubMatrix({4-1}{6-3})[code = \MyDraw]
 \SubMatrix({4-5}{6-7})[code = \MyDraw]
\end{NiceArray}$

60Attention : la syntaxe j|-i n’est pas autorisée.

44

−1 1 2
0 3 4
0 0 5

1 2 3 −1 7 25
0 4 5 0 12 41
0 0 6 0 0 30

   
Comme on le voit, le tracé effectué par la commande \MyDraw est relatif à la sous-matrice à laquelle
elle s’applique.

12.3 Les commandes \OverBrace et \UnderBrace dans le \CodeAfter

Les commandes \OverBrace and \UnderBrace permettent de placer des accolades horizontales sur
une partie du tableau. Ces commandes prennent trois arguments :

• le premier argument est le coin supérieur gauche du rectangle de cases impliquées dans l’accolade
avec la syntaxe habituelle i-j où i est le numéro de rangée et j le numéro de colonne ;

• le deuxième argument est le coin inférieur droit avec la même syntaxe ;

• le troisième argument est le « label » de l’accolade qui sera placé par nicematrix (avec pgf)
au-dessus de l’accolade (pour la commande \OverBrace) ou au-dessous (pour \UnderBrace).
Il est possible de mettre des commandes \\ dans ce dernier argument pour formater le label
sur plusieurs lignes de texte.

\begin{pNiceMatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
11 & 12 & 13 & 14 & 15 & 16 \\
\CodeAfter
 \OverBrace{1-1}{2-3}{A}
 \OverBrace{1-4}{2-6}{B}
\end{pNiceMatrix}

(
1 2 3 4 5 6
11 12 13 14 15 16

)A︷ ︸︸ ︷ B︷ ︸︸ ︷

Attention : Aucun espace vertical n’est réservé par nicematrix pour ces accolades, ni pour leurs labels.61

Les commandes \OverBrace et \UnderBrace acceptent en fait un premier argument optionnel (entre
crochets) pour une liste de couples clé=valeur. Les clés disponibles sont les suivantes :

• left-shorten et right-shorten qui ne prennent pas de valeur ; quand left-shorten est
utilisée, l’abscisse de l’extrémité de gauche de l’accolade est calculée à partir du contenu du
sous-tableau concerné alors que, sinon, c’est la position du filet vertical éventuel qui est utilisée
(de même pour right-shorten) ;

• shorten , qui est la conjonction des clés left-shorten et right-shorten ;

• yshift , qui déplace verticalement l’accolade (et son label) ;

• color qui fixe la couleur de l’accolade et du label.

\begin{pNiceMatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
11 & 12 & 13 & 14 & 15 & 16 \\
\CodeAfter
 \OverBrace[shorten,yshift=3pt]{1-1}{2-3}{A}
 \OverBrace[shorten,yshift=3pt]{1-4}{2-6}{B}
\end{pNiceMatrix}

(
1 2 3 4 5 6
11 12 13 14 15 16

)A︷ ︸︸ ︷ B︷ ︸︸ ︷

61Voir à ce sujet : https://tex.stackexchange.com/questions/685755

45

https://tex.stackexchange.com/questions/685755

12.4 La commande \TikzEveryCell dans le \CodeAfter

La commande \TikzEveryCell exécute avec TikZ le chemin rectangulaire qui correspond à chaque
case du tableau, avec comme paramètres TikZ l’argument de \TikzEveryCell. Cet argument doit
être une liste de couples clé=valeur applicables à un chemin TikZ. En fait, cette commande s’applique
à chaque case du tableau, exceptées celles situées dans les rangées et colonnes extérieures (cf. p. 31)
et celles situées dans les coins vides (quand la clé corners est utilisée : cf. p. 16). Elle s’applique
en fait aussi à chaque bloc (sauf ceux qui ont la clé transparent) et ne s’applique pas aux cases
individuelles situées dans ces blocs.

En fait, dans la liste des clés passée en argument on peut mettre une clé offset . Cette clé n’est pas
fournie par TikZ mais par nicematrix. Elle réduit le rectangle correspondant au bloc par une marge
(horizontalement et verticalement) égale à la valeur (passée à offset). C’est ce rectangle réduit qui
sera le chemin exécuté par TikZ avec comme options les autres clés de l’argument de \TikzEveryCell.

\renewcommand{\arraystretch}{1.3}
\begin{NiceTabular}{ccc}[corners]
 & \Block{1-2}{columns} \\
 \Block{2-1}{rows}
 & cell 1 1 & cell 1 2 \\
 & cell 2 1 & cell 2 2
\CodeAfter
 \TikzEveryCell{offset=1pt,draw}
\end{NiceTabular}

cell 1 1 cell 1 2
cell 2 1 cell 2 2

columns

rows

La commande \TikzEveryCell possède deux clés, utilisables en argument optionnel, entre crochets.

• avec la clé empty , la commande ne s’applique qu’aux cases vides (les cases considérées comme
vides sont décrites à la partie 17.2, p. 62) ;

• avec la clé non-empty , la commande ne s’applique qu’aux cases non vides.

\renewcommand{\arraystretch}{1.4}
\begin{NiceTabular}{cccccc}[hvlines]
 P & O & U & R & V & U \\
 O & & & E & I & \\
 M & O & R & F & A & L \\
 E & T & A & L & & E \\
 L & A & S & E & R & S \\
 O & & E & X & I & T
\CodeAfter
 \TikzEveryCell[empty]{fill=gray,draw}
\end{NiceTabular}

P O U R V U

O E I

M O R F A L

E T A L E

L A S E R S

O E X I T

La commande \TikzEveryCell est en fait aussi disponible dans le \CodeBefore.

13 Les légendes et les notes dans les tableaux

13.1 La légendes des tableaux

L’environnement {NiceTabular} propose des clés caption , short-caption et label à utiliser
lorsque le tableau est inséré dans un environnment flottant (typiquement un environnement {table}).
L’intérêt d’utiliser cette clé caption plutôt que la commande classique \caption est que la légende, si
elle est longue, est justifiée à la largeur du tableau (hors éventuelles colonnes extérieures spécifiées par
first-col et last-col : cf. 9, p. 31). Il n’y a pas besoin d’avoir recours à l’extension threeparttable
ou l’extension floatrow.

46

Par défaut, la légende est placée au-dessous du tableau. Pour avoir la légende placée au-dessus, il
convient d’utiliser la clé caption-above dans \NiceMatrixOptions (elle n’est pas disponible dans
un environnement individuel).
La clé short-caption correspond à l’argument optionnel de la commande classique \caption et la
clé label correspond bien sûr à la commande \label.
Voir table 1, p. 49, un exemple d’utilisation des clés caption et label.
Ces fonctionnalités sont compatibles avec l’extension caption.

13.2 Les notes de pied de page

L’extension nicematrix permet, en utilisant footnote ou bien footnotehyper, d’extraire les notes insérées
avec \footnote dans un environnement de nicematrix pour les reporter en pied de page avec les autres
notes du document.
Si nicematrix est chargée avec l’option footnote (avec \usepackage[footnote]{nicematrix} ou
avec \PassOptionsToPackage), l’extension footnote est chargée (si elle ne l’est pas déjà) et elle est
utilisée pour extraire les notes de pied de page.
Si nicematrix est chargée avec l’option footnotehyper, l’extension footnotehyper est chargée (si elle
ne l’est pas déjà) et elle est utilisée pour extraire les notes de pied de page.
Attention : Les extensions footnote et footnotehyper sont incompatibles. L’extension footnotehyper est
le successeur de l’extension footnote et devrait être utilisée préférentiellement. L’extension footnote
a quelques défauts ; en particulier, elle doit être chargée après l’extension xcolor et elle n’est pas
parfaitement compatible avec hyperref.

13.3 Les notes de tableaux

L’extension nicematrix propose aussi une commande \tabularnote qui permet de spécifier des notes
qui seront composées à la fin du tableau avec une longueur pour les lignes de texte égale à la lar-
geur du tableau (hors éventuelles colonnes extérieures spécifiées par first-col et last-col : cf. 9,
p. 31). Sans surprise, cette commande n’est disponible que dans {NiceTabular}, {NiceTabular*} et
{NiceTabularX}.
En fait, cette commande n’est disponible que si l’extension enumitem a été chargée (avant ou après
nicematrix). Les notes sont en effet composées en fin de tableau selon un type de liste défini par
l’extension enumitem.
\begin{NiceTabular}{@{}llr@{}}
\toprule \RowStyle{\bfseries}
Nom & Prénom & Date de naissance \\
\midrule
Achard\tabularnote{La famille Achard est une très ancienne famille du Poitou.}
& Jacques & 5 juin 1962 \\
Lefebvre\tabularnote{Le patronyme Lefebvre est une altération de Lefébure.}
& Mathilde & 23 mai 1988 \\
Vanesse & Stéphanie & 30 octobre 1994 \\
Dupont & Chantal & 15 janvier 1998 \\
\bottomrule
\end{NiceTabular}

Nom Prénom Date de naissance
Acharda Jacques 5 juin 1962
Lefebvreb Mathilde 23 mai 1988
Vanesse Stéphanie 30 octobre 1994
Dupont Chantal 15 janvier 1998
a La famille Achard est une très ancienne fa-

mille du Poitou.
b Le patronyme Lefebvre est une altération de

Lefébure.

47

• La commande \tabularnote est en fait utilisable avant l’environnement de nicematrix, le but
étant de pouvoir l’utiliser sur le titre inséré par \caption dans un environnement {table}
de LaTeX (ou dans la commande \captionof de l’extension caption). Sans surprise, il est
également possible de l’utiliser dans la légende rentrée avec la clé caption de l’environnement
{NiceTabular}.

• Si plusieurs commandes \tabularnote{...} se suivent sans aucun espace entre elles, les appels
de notes correspondants sont composés ensemble, séparés par une virgule (comme avec l’option
multiple de footmisc pour les notes de pied de page).

• Si une commande \tabularnote{...} se trouve exactement à la fin d’une case (sans aucun
espace après) et que le mode d’alignement de la colonne est c ou r, l’appel de note est composé
en débordement vers la droite (cela peut permettre de mieux conserver l’alignement des contenus
d’une colonne).

• Si la clé notes/para est utilisée, les notes sont composées à la fin du tableau en un seul
paragraphe.

• Il existe une clé tabularnote qui permet d’insérer du texte dans la zone des notes avant les
notes numérotées.
Une syntaxe alternative est proposée : il est possible d’utiliser l’environnement {TabularNote}
à la fin de l’environnement {NiceTabular} (mais avant l’éventuel \CodeAfter).

• Si l’extension booktabs a été chargée (avant ou après nicematrix), la clé notes/bottomrule
permet de faire tracer un \bottomrule de booktabs après les notes.

• Lorsque plusieurs commandes \tabularnote sont utilisées avec le même argument, une seule
note est insérée en fin de tableau (mais tous les labels sont marqués). Il est possible de désactiver
cette fonctionnalité avec la clé notes/detect-duplicates.62

• Il est possible de référencer une note de tableau (avec la commande \label placée après le
\tabularnote).

• La commande \tabularnote admet un argument optionnel (entre crochets) qui permet de
changer le symbole de l’appel de note.
Exemple : \tabularnote[\star]{Une note...}.

Voir sur la table 1, p. 49, certaines de ces remarques illustrées. Cette table a été composée avec le
code suivant (l’extension caption a été chargée dans ce document).

\begin{table}[hbt]
\centering
\NiceMatrixOptions{caption-above}
\begin{NiceTabular}{@{}llc@{}}%
 [
 caption = Un tableau dont la légende a été rentrée avec la clé \texttt{caption}%
 \tabularnote[\star]{On peut mettre une note dans la légende.} ,
 label = t:tabularnote,
 tabularnote = Un peu de texte avant les notes. ,
 notes/bottomrule
]
\toprule
Nom & Prénom & Durée de vie \\
\midrule
Barrère & Bertrand & 86\\
Nightingale\tabularnote{Souvent considérée comme la première infirmière.}%
 \tabularnote{Surnommée «la Dame à la Lampe».}
 & Florence\tabularnote{Cette note est commune à deux appels de notes.} & 90 \\
Schœlcher & Victor & 89\tabularnote{L’appel de note déborde à droite.}\\

62Pour des raisons techniques, il n’est pas autorisé de mettre plusieurs \tabularnote avec exactement le même
argument dans la légende. Ce n’est pas vraiment contraignant.

48

Touchet & Marie\tabularnote{Cette note est commune à deux appels de notes.} & 89 \\
Wallis & John & 87 \\
\bottomrule
\end{NiceTabular}
\end{table}

Tab. 1 : Un tableau dont la légende a été
rentrée avec la clé caption?

Nom Prénom Durée de vie
Barrère Bertrand 86
Nightingalea,b Florencec 90
Schœlcher Victor 89d

Touchet Mariec 89
Wallis John 87
Un peu de texte avant les notes.
? On peut mettre une note dans la lé-

gende.
a Souvent considérée comme la première

infirmière.
b Surnommée « la Dame à la Lampe ».
c Cette note est commune à deux appels

de notes.
d L’appel de note déborde à droite.

13.4 Personnalisation des notes de tableau

Les notes de tableau peuvent être personnalisées grâce à un ensemble de clés disponibles dans
\NiceMatrixOptions. Ces clés ont un nom préfixé par notes :

• notes/para

• notes/bottomrule

• notes/style

• notes/label-in-tabular

• notes/label-in-list

• notes/enumitem-keys

• notes/enumitem-keys-para

• notes/code-before

• notes/detect-duplicates

Pour la commodité, il est aussi possible de fixer ces clés dans \NiceMatrixOptions via une clé notes
qui prend en argument une liste de paires clé=valeur où le nom des clés n’a plus à être préfixé par
notes :

\NiceMatrixOptions
 {
 notes =
 {
 bottomrule ,
 style = ... ,
 label-in-tabular = ... ,
 enumitem-keys =

49

 {
 labelsep = ... ,
 align = ... ,
 ...
 }
 }
 }

On détaille maintenant ces clés.

• La clé notes/para demande la composition des notes en fin de tableau en un seul paragraphe.
Valeur initiale : false
Cette clé est également accessible dans un environnement individuel.

• La clé notes/bottomrule permet de faire tracer un \bottomrule de booktabs après les notes.
Ce trait n’est tracé que s’il y a effectivement des notes dans le tableau. L’extension booktabs
doit avoir été chargée (avant ou après l’extension nicematrix). Dans le cas contraire, une erreur
est générée.
Valeur initiale : false
Cette clé est également accessible dans un environnement individuel.

• La clé notes/style est une commande dont l’argument est spécifié par #1 et qui indique le
style de numérotation des notes. C’est ce style qui est utilisé par \ref pour faire référence à
une note de tableau pour laquelle on a utilisé un \label. Ce sont les labels mis en forme avec
ce style qui sont séparés par des virgules quand on utilise plusieurs commandes \tabularnote
successivement. Le marqueur #1 est censé correspondre à un nom de compteur LaTeX.
Valeur initiale : \textit{\alph{#1}}
Une autre valeur possible pourrait être tout simplement \arabic{#1}

• La clé notes/label-in-tabular est une commande dont l’argument est spécifié par #1 et qui
sert au formatage de l’appel de note dans le tableau. En interne, le numéro de note a déjà été
formaté par notes/style avant d’être passé en argument à cette commande.
Valeur initiale : #1
Pour la composition du français, il est de tradition de mettre un petit espace avant l’appel de
note. On peut faire ce réglage de la manière suivante :
\NiceMatrixOptions{notes/label-in-tabular = \,#1}

• La clé notes/label-in-list est une commande dont l’argument est spécifié par #1 et qui sert
au formatage du numéro de note dans la liste des notes en fin de tableau. En interne, le numéro
de note a déjà été formaté par notes/style avant d’être passé en argument à cette commande.
Valeur initiale : #1
Pour la composition du français, on ne compose pas les labels des notes en lettres supérieures
dans la liste des notes. On pourra donc prendre le réglage suivant :
\NiceMatrixOptions{notes/label-in-list = #1.\nobreak\hspace{0.25em}}

La commande \nobreak est pour le cas où l’option para est utilisée.

• Les notes sont composées en fin de tableau en utilisant en interne un style de liste de enumitem.
Ce style de liste est défini de la manière suivante (avec, bien sûr, des clés de enumitem) :
noitemsep , leftmargin = * , align = left , labelsep = 0pt

La spécification align = left de ce style demande que le label de la note soit composé à gauche
dans la boîte qui lui est dévolue. Ce réglage a l’avantage d’avoir les notes calées à gauche, ce qui
est plaisant si on compose des tableaux dans l’esprit de booktabs (voir par exemple la table 1,
p. 49).

La clé notes/enumitem-keys fournie par nicematrix permet de modifier ce type de liste de
enumitem (en utilisant en interne la commande \setlist* de enumitem).

50

• La clé notes/enumitem-keys-para est similaire à la précédente mais elle est utilisée pour le
type de liste qui sera utilisé quand l’option para est choisie. Bien entendu, quand cette option
para est active, c’est une liste de type inline (suivant le vocabulaire de enumitem) qui est
utilisée et les paires clé=valeur doivent donc correspondre à une telle liste de type inline.
Initialement, le style de liste utilisé est défini par :
afterlabel = \nobreak, itemjoin = \quad

• La clé notes/code-before est une liste de tokens qui seront insérés avant la composition de
la liste de notes.
Valeur initiale : vide
Si on souhaite, par exemple, que les notes soient composées en gris et en \footnotesize, c’est
cette clé qu’il faut utiliser.

\NiceMatrixOptions{notes/code-before = \footnotesize \color{gray}}

On peut aussi mettre dans cette clé \raggedright ou \RaggedRight (cette dernière est une
commande de ragged2e).

• La clé notes/detect-duplicates active la détection des commandes \tabularnote avec le
même argument.
Valeur initiale : true

Pour un exemple de personnalisation des notes de tableau, voir p. 66.

13.5 Utilisation de {NiceTabular} avec threeparttable
Si vous souhaitez utiliser les environnements {NiceTabular}, {NiceTabular*} ou {NiceTabularX}
dans un environnement {threeparttable} de l’extension éponyme, vous devez patcher l’environne-
ment {threeparttable} avec le code suivant.
\makeatletter
\AddToHook{env/threeparttable/begin}
 {\TPT@hookin{NiceTabular}\TPT@hookin{NiceTabular*}\TPT@hookin{NiceTabularX}}
\makeatother
Néanmoins, les fonctionnalités proposées par nicematrix rendent peu utile l’utilisation de threeparttable
en conjonction avec nicematrix (voir la clé caption à la partie 13.1, p. 46).

14 Autres fonctionnalités

14.1 La clé rounded-corners

La clé rounded-corners que l’on décrit maintenant n’a pas de lien direct avec la clé corners (qui
sert à spécifier les « coins vides ») décrite à la partie 5.3.3, p. 16.
La clé rounded-corners spécifie que le tableau ou la matrice devra avoir des coins arrondis avec un
rayon égal à la valeur de cette clé (la valeur par défaut est 4 pt63). Plus précisément, cette clé a deux
effets que l’on décrit maintenant.

• Toutes les commandes de coloriage de cases, colonnes et rangées (que ce soit dans le \CodeBefore
ou bien directement dans le tableau respectent ces coins arrondis pour le tableau.

• Quand la clé hvlines est utilisée, les filets extérieurs sont tracés avec des coins arrondis.64

63Cette valeur est la valeur par défaut des « rounded corners » de PGF/Tikz.
64Bien sûr, lorsqu’il s’agit d’un environnement avec des délimiteurs ({pNiceArray}, {pNiceMatrix}, etc.) la clé hvlines

ne trace pas les filets extérieurs.

51

Cette clé est disponible dans tous les environnements et commandes de nicematrix (comme par exemple
\pAutoNiceMatrix) et également dans \NiceMatrixOptions.

\begin{NiceTabular}{ccc}[hvlines,rounded-corners]
\CodeBefore
 \rowcolor{red!15}{1}
\Body
 Nom & Prénom & Profession \\
 Arvy & Jacques & Dentiste \\
 Jalon & Amandine & Dentiste \\
\end{NiceTabular}

Nom Prénom Profession
Arvy Jacques Dentiste
Jalon Amandine Dentiste

14.2 Commande \ShowCellNames

La commande \ShowCellNames , utilisable dans le \CodeBefore et le \CodeAfter affiche le nom (sous
la forme i-j) de chaque case. Quand elle est utilisée dans le \CodeAfter, cette commande applique
un rectangle blanc semi-transparent pour estomper le tableau (attention : certains lecteurs de pdf
ne prennent pas en charge la transparence).

\begin{NiceTabular}{ccc}[hvlines,cell-space-limits=3pt]
 \Block{2-2}{} & & test \\
 & & blabla \\
 & some text & nothing
\CodeAfter \ShowCellNames
\end{NiceTabular}

test
blabla

some text nothing

1-1 1-2 1-3
2-1 2-2 2-3
3-1 3-2 3-3

14.3 Utilisation du type de colonne S de siunitx
Si l’extension siunitx est chargée (avant ou après nicematrix), il est possible d’utiliser les colonnes de
type S de siunitx dans les environnements de nicematrix.

$\begin{pNiceArray}{ScW{c}{1cm}c}[xdots/nullify,first-row]
{C_1} & \Cdots & & C_n \\
2.3 & 0 & \Cdots & 0 \\
12.4 & \Vdots & & \Vdots \\
1.45 \\
7.2 & 0 & \Cdots & 0
\end{pNiceArray}$


C1 Cn

2.3 0 0
12.4
1.45
7.2 0 0



En revanche, les colonnes d de l’extension dcolumn ne sont pas prises en charge par nicematrix.

14.4 Type de colonne par défaut dans {NiceMatrix}

Les environnements sans préambule ({NiceMatrix}, {pNiceMatrix}, etc.) ainsi que la commande
\pAutoNiceMatrix et ses variantes, acceptent la clé columns-type qui indique le type de colonne
qui sera utilisé.

Les clés l et r sont des raccourcis pour columns-type=l et columns-type=r.

$\begin{bNiceMatrix}[r]
\cos x & - \sin x \\
\sin x & \cos x
\end{bNiceMatrix}$

[
cosx − sinx
sinx cosx

]

La clé columns-type peut être utilisée dans \NiceMatrixOptions à condition de la préfixer par
matrix, ce qui fait que son nom devient matrix/columns-type.

52

14.5 La commande \rotate

Utilisée au début d’une case, la commande \rotate (fournie par nicematrix) compose le contenu
après une rotation de 90° dans le sens direct.
Dans l’exemple suivant, on l’utilise dans le code-for-first-row.65

\NiceMatrixOptions
 {code-for-first-row = \scriptstyle \rotate \text{image de },
 code-for-last-col = \scriptstyle }
$A = \begin{pNiceMatrix}[first-row,last-col=4]
e_1 & e_2 & e_3 \\
1 & 2 & 3 & e_1 \\
4 & 5 & 6 & e_2 \\
7 & 8 & 9 & e_3
\end{pNiceMatrix}$

A =



im
ag

e
de

e
1

im
ag

e
de

e
2

im
ag

e
de

e
3

1 2 3 e1

4 5 6 e2

7 8 9 e3


Si la commande \rotate est utilisée dans la « dernière rangée » (extérieure à la matrice), les éléments
qui subissent cette rotation sont alignés vers le haut.

\NiceMatrixOptions
 {code-for-last-row = \scriptstyle \rotate ,
 code-for-last-col = \scriptstyle }
$A = \begin{pNiceMatrix}[last-row=4,last-col=4]
1 & 2 & 3 & e_1 \\
4 & 5 & 6 & e_2 \\
7 & 8 & 9 & e_3 \\
\text{image de } e_1 & e_2 & e_3
\end{pNiceMatrix}$

A =

1 2 3 e1

4 5 6 e2

7 8 9 e3

im
ag

e
de

e
1

e
2

e
3



La commande \rotate accepte une option c entre crochets : \rotate[c] (les espaces sont supprimés
après \rotate[c]). Quand cette clé est utilisée, le contenu, après rotation, est composé dans une
\vcenter (une primitive de TeX), ce qui fait que, le plus souvent, on obtiendra un centrage vertical.

Attention : la commande \rotate est prévue pour être utilisée dans un \Block ou bien dans des
colonnes de type l, c, r, w ou W ; si elle est utilisée dans un autre type de colonne (commme p{...}),
les résultats ne seront peut-être pas ceux attendus.

14.6 L’option small

Avec l’option small , les environnements de l’extension nicematrix sont composés d’une manière
proche de ce que propose l’environnement {smallmatrix} de l’amsmath (et les environnements
{psmallmatrix}, {bsmallmatrix}, etc. de mathtools).

$\begin{bNiceArray}{cccc|c}[small,
 last-col,
 code-for-last-col = \scriptscriptstyle,
 columns-width = 3mm]
1 & -2 & 3 & 4 & 5 \\
0 & 3 & 2 & 1 & 2 & L_2 \gets 2 L_1 - L_2 \\
0 & 1 & 1 & 2 & 3 & L_3 \gets L_1 + L_3
\end{bNiceArray}$ [1 −2 3 4 5

0 3 2 1 2 L2←2L1−L2
0 1 1 2 3 L3←L1+L3

]
On remarquera néanmoins que l’environnement {NiceMatrix} avec l’option small ne prétend pas
être composé exactement comme l’environnement {smallmatrix}. C’est que les environnements de
nicematrix sont tous fondés sur {array} (de array) alors que ce n’est pas le cas de {smallmatrix}
(fondé directement sur un \halign de TeX).

65On peut aussi l’utiliser dans \RowStyle (cf. p. 28).

53

En fait, l’option small correspond aux réglages suivants :

• les composantes du tableau sont composées en \scriptstyle ;

• \arraystretch est fixé à 0.47 ;

• \arraycolsep est fixé à 1.45 pt ;

• les caractéristiques des lignes en pointillés sont également modifiées.

Quand la clé small est active, certaines fonctionnalités de nicematrix ne sont plus disponibles : par
exemple, il n’est plus possible de mettre des délimiteurs directement dans le préambule d’un environ-
nement avec préambule (cf. partie 11, p. 40).

14.7 \AutoNiceMatrix et les compteurs iRow et jCol

Dans les cases du tableau, il est possible d’utiliser les compteurs LaTeX iRow et jCol66 qui repré-
sentent le numéro de la rangée courante et le numéro de la colonne courante. On rappelle que le
numéro de la « première rangée » (si elle existe) est 0 et que le numéro de la « première colonne »
(si elle existe) est 0 également. Bien entendu, l’utilisateur ne doit pas modifier les valeurs de ces
compteurs iRow et jCol qui sont utilisés en interne par nicematrix.
Dans le \CodeBefore (cf. p. 22) et dans le \CodeAfter (cf. p. 41), iRow représente le nombre total
de rangées (hors éventuelles rangées extérieures : cf. p. 31) et jCol le nombre total de colonnes (hors
potentielles colonnes extérieures).

$\begin{pNiceMatrix}%
 [first-row,
 first-col,
 code-for-first-row = \mathbf{\alph{jCol}} ,
 code-for-first-col = \mathbf{\arabic{iRow}}]
& & & & \\
& 1 & 2 & 3 & 4 \\
& 5 & 6 & 7 & 8 \\
& 9 & 10 & 11 & 12
\end{pNiceMatrix}$


a b c d

1 1 2 3 4
2 5 6 7 8
3 9 10 11 12



Si des compteurs LaTeX nommés iRow ou jCol sont créés dans le document par d’autres extensions
que nicematrix (ou tout simplement par l’utilisateur final), ces compteurs sont masqués dans les
environnements de nicematrix.

L’extension nicematrix propose aussi des commandes pour composer automatiquement des matrices
à partir d’un motif général. Ces commandes sont nommées \AutoNiceMatrix , \pAutoNiceMatrix ,
\bAutoNiceMatrix , \vAutoNiceMatrix , \VAutoNiceMatrix et \BAutoNiceMatrix .
Chacune de ces commandes prend deux arguments obligatoires : le premier est la taille de la matrice,
sous la forme n-p, où n est le nombre de rangées et p est le nombre de colonnes et le deuxième est le
motif (c’est-à-dire simplement des tokens qui seront insérés dans chaque case de la matrice).

$C = \pAutoNiceMatrix{3-3}{C_{\arabic{iRow},\arabic{jCol}}}$

C =

C1,1 C1,2 C1,3

C2,1 C2,2 C2,3

C3,1 C3,2 C3,3


Il existe aussi \AutoNiceArrayWithDelims similaire à {NiceArrayWithDelims}.

66Il s’agit bien de compteurs LaTeX, ce qui fait que les compteurs TeX sous-jacents sont \c@iRow et \c@jCol.

54

14.8 L’option light-syntax

L’option light-syntax (inspirée de l’extension spalign) permet d’alléger la saisie des matrices, ainsi
que leur lisibilité dans le source TeX. Lorsque cette option est activée, on doit utiliser le point-virgule
comme marqueur de fin de rangée et séparer les colonnes par des espaces ou des tabulations. On
remarquera toutefois que, comme souvent dans le monde TeX, les espaces après les séquences de
contrôle ne sont pas comptées et que les éléments entre accolades sont considérés comme un tout.
$\begin{bNiceMatrix}[light-syntax,first-row,first-col]
{} a b ;
a 2\cos a {\cos a + \cos b} ;
b \cos a+\cos b { 2 \cos b }
\end{bNiceMatrix}$

[a b
a 2 cos a cos a+ cos b
b cos a+ cos b 2 cos b

]

On peut changer le caractère utilisé pour indiquer les fins de rangées avec l’option end-of-row .
Comme dit précédemment, la valeur initiale de ce paramètre est un point-virgule.
Lorsque l’option light-syntax est utilisée, il n’est pas possible de mettre d’éléments en verbatim
(avec par exemple la commande \verb) dans les cases du tableau.67

La clé light-syntax-expanded a le même comportement que la clé light-syntax mais avec cette
différence que le corps de l’environnement est complètement développé (au sens de TeX68) avant
découpe en rangées (mais après l’extraction de l’éventuel \CodeAfter).

14.9 Couleur des délimiteurs

Pour les environnements avec délimiteurs ({pNiceArray}, {pNiceMatrix}, etc.), il est possible de
changer la couleur des délimiteurs avec la clé delimiters/color .

$\begin{bNiceMatrix}[delimiters/color=red]
1 & 2 \\
3 & 4
\end{bNiceMatrix}$

[
1 2
3 4

]

Cette couleur s’applique aussi aux délimiteurs tracés par \SubMatrix (cf. p. 42) et aux délimiteurs
spécifiés directement dans le préambule des environnements à préambule (cf. p. 40).

14.10 L’environnement {NiceArrayWithDelims}

En fait, l’environnement {pNiceArray} et ses variantes sont fondés sur un environnement plus général,
appelé {NiceArrayWithDelims} . Les deux premiers arguments obligatoires de cet environnement
sont les délimiteurs gauche et droit qui seront utilisés dans la construction de la matrice. Il est
possible d’utiliser {NiceArrayWithDelims} si on a besoin de délimiteurs atypiques ou asymétriques.

$\begin{NiceArrayWithDelims}
 {\downarrow}{\uparrow}{ccc}[margin]
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{NiceArrayWithDelims}$

y
1 2 3
4 5 6
7 8 9

x

14.11 La commande \OnlyMainNiceMatrix

La commande \OnlyMainNiceMatrix n’exécute son argument que si on se trouve dans le tableau
principal, c’est-à-dire que l’on est ni dans les rangées extérieures, ni dans les colonnes extérieures. Si
elle est utilisée hors d’un environnement de nicematrix, elle est sans effet.
Pour un exemple d’utilisation, voir tex.stackexchange.com/questions/488566

67La raison en est que lorsque l’option light-syntax est utilisée, le contenu complet de l’environnement est chargé
comme un argument de commande TeX. L’environnement ne se comporte plus comme un « vrai » environnement de
LaTeX qui se contente d’insérer des commandes avant et après.

68Plus précisément, il s’agit d’une expansion de type e de L3.

55

tex.stackexchange.com/questions/488566

15 Utilisation de TikZ avec nicematrix

15.1 Les nœuds correspondant aux contenus des cases

L’extension nicematrix crée un nœud PGF-TikZ69 pour chaque contenu de case non vide du tableau
considéré. Ces nœuds sont utilisés, entre autres, pour tracer les lignes en pointillés entre les cases du
tableau.
Attention : Par défaut, aucun nœud n’est créé dans une case vide.
Néanmoins, on peut forcer la création d’un nœud avec la commande \NotEmpty.70

Comme la création de ces nœuds requiert du temps et de la mémoire, il est possible de la désactiver
ponctuellement avec la clé no-cell-nodes pour accélérer les compilations. Attention toutefois : ces
nœuds sont utilisés en interne par certaines fonctionnalités de nicematrix. On ne peut donc utiliser
no-cell-nodes que si on n’utilise pas ces fonctionnalités, parmi lesquelles figurent la clé corners et
les commandes de lignes pointillées continues (\Cdots, etc.).

Tous les nœuds du document doivent avoir des noms deux à deux distincts et le nom de ces nœuds doit
donc faire intervenir le numéro de l’environnement courant. Les environnements créés par nicematrix
sont en effet numérotés par un compteur global interne.
Si l’environnement concerné a le numéro n, alors le nœud de la rangée i et de la colonne j a pour
nom nm-n-i-j.
La commande \NiceMatrixLastEnv donne le numéro du dernier de ces environnements (pour LaTeX,
il s’agit d’une commande — complètement développable — et non d’un compteur).
Il est néanmoins recommandé de passer plutôt par la clé name71. Celle-ci permet de donner un nom
à l’environnement. Une fois l’environnement nommé, les nœuds sont accessibles à travers les noms
« nom-i-j » où nom est le nom donné au tableau et i et j les numéros de rangée et de colonne de
la case considérée. On peut les utiliser avec pgf mais l’utilisateur final préférera sans doute utiliser
TikZ (qui est une sur-couche de pgf). Il faut néanmoins se souvenir que nicematrix ne charge pas
TikZ par défaut. Dans les exemples qui suivent, on suppose que TikZ a été chargé par l’utilisateur.

$\begin{pNiceMatrix}[name = ma-matrice]
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{pNiceMatrix}$
\tikz[remember picture,overlay]
 \draw (ma-matrice-2-2) circle (2mm) ;

1 2 3
4 5 6
7 8 9



Ne pas oublier les options remember picture et overlay.

Dans le \CodeAfter, et si TikZ est chargé, les choses sont plus simples. On peut (et on doit) désigner
les nœuds sous la forme i-j : il n’y a pas à préciser l’environnement qui est évidemment l’environnement
courant.
$\begin{pNiceMatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\CodeAfter
\tikz \draw (2-2) circle (2mm) ;
\end{pNiceMatrix}$

1 2 3
4 5 6
7 8 9



69On rappelle que TikZ est une sur-couche de pgf. L’extension nicematrix charge pgf et ne charge pas TikZ. On parle
de « nœud PGF-TikZ » pour rappeler que, en fait, les nœuds créés par nicematrix avec pgf sont en fait aussi utilisables
avec TikZ. L’utilisateur final préférera sans doute les utiliser avec TikZ qu’avec pgf.

70Il faut toutefois remarquer qu’avec cette commande, la case est considérée comme non vide, ce qui a des conséquences
sur le tracé des lignes pointillées (cf. p. 33) et la détermination des « coins » (cf. p. 16).

71La valeur passée à la clé name est développée, au sens de TeX.

56

Les nœuds de la dernière colonne (hors éventuelle « colonne extérieure » spécifiée par last-col72)
peuvent aussi être désignés par i-last. De même, les nœuds de la dernière rangée peuvent être désignés
par last-j.

Dans l’exemple suivant, nous avons encadré tous les nœuds de la matrice.a a+ b a+ b+ c
a a a+ b
a a a


Puisque ces nœuds sont des nœuds pgf, on ne sera pas étonné d’appendre qu’ils sont tracés en
utilisant un style pgf spécifique. Ce style est nommé nicematrix/cell-node et sa définition dans le
fichier source nicematrix.sty est la suivante :
\pgfset
 {
 nicematrix / cell-node /.style =
 {
 inner sep = 0 pt ,
 minimum width = 0 pt
 }
 }
L’utilisateur peut modifier ce style en changeant les valeurs des clés text/rotate, inner xsep,
inner ysep, inner sep, outer xsep, outer ysep, outer sep, minimum width, minimum height
et minimum size.

Pour un exemple d’utilisation, voir la partie 18.10, p. 77.

15.1.1 La clé pgf-node-code

Pour les utilisateurs expérimentés, nicematrix fournit la clé pgf-node-code qui correspond à du
code pgf qui sera exécuté à la création, par pgf, des nœuds correspondants aux cases du tableau.
Plus précisément, la valeur fournie à la clé pgf-node-code sera passée en cinquième argument de
la commande \pgfnode. Cette valeur doit contenir au moins une instruction comme \pgfusepath,
\pgfusepathqstroke, \pgfusepathqfill, etc.

15.1.2 Les colonnes V de varwidth

Quand l’extension varwidth est chargée, les colonnes de type V définies par varwidth sont prises en
charge par nicematrix. Il peut être intéressant de préciser que, pour une case située dans une colonne
de type V, le nœud PGF-TikZ créé par nicematrix pour le contenu de cette case a une largeur ajustée
au contenu de cette case. Cela est en contraste avec le cas des colonnes de type p, m ou b dans
lesquelles les nœuds ont toujours une largeur égale à la largeur de la colonne. Dans l’exemple suivant,
la commande \lipsum est fournie par l’extension éponyme.
\begin{NiceTabular}{V{10cm}}
\bfseries \large
Titre \\
\lipsum[1][1-4]
\CodeAfter
 \tikz \draw [rounded corners] (1-1) -| (last-|2) -- (last-|1) |- (1-1) ;
\end{NiceTabular}

Titre
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus
elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur
dictum gravida mauris. Nam arcu libero, nonummy eget, consec-
tetuer id, vulputate a, magna.

On a utilisé les nœuds indiquant la position des filets, qui sont présentés un peu plus loin, p. 59.

72Pour les colonnes extérieures, cf. partie 9, p. 31.

57

15.2 Les « nœuds moyens » et les « nœuds larges »

En fait, l’extension nicematrix peut créer deux séries de nœuds supplémentaires (extra nodes en an-
glais) : les « nœuds moyens » (medium nodes en anglais) et les « nœuds larges » (large nodes en
anglais). Les premiers sont créés avec l’option create-medium-nodes et les seconds avec l’option
create-large-nodes .73

Ces nœuds ne sont pas utilisés par défaut par nicematrix.

Les noms des « nœuds moyens » s’obtiennent en ajoutant le suffixe « -medium» au nom des nœuds
normaux. Dans l’exemple suivant, on a surligné tous les « nœuds moyens ». Nous considérons que cet
exemple se suffit à lui-même comme définition de ces nœuds.a a+ b a+ b+ c

a a a+ b
a a a


Les noms des « nœuds larges » s’obtiennent en ajoutant le suffixe « -large» au nom des nœuds
normaux. Dans l’exemple suivant, on a surligné tous les « nœuds larges ». Nous considérons que cet
exemple se suffit à lui-même comme définition de ces nœuds.74a a+ b a+ b+ c

a a a+ b
a a a


Les « nœuds larges » de la première colonne et de la dernière colonne peuvent apparaître trop
petits pour certains usages. C’est pourquoi il est possible d’utiliser les options left-margin et
right-margin pour ajouter de l’espace des deux côtés du tableau et aussi de l’espace dans les
« nœuds larges » de la première colonne et de la dernière colonne. Dans l’exemple suivant, nous avons
utilisé les options left-margin et right-margin.75 a a+ b a+ b+ c

a a a+ b
a a a


Il est aussi possible d’ajouter de l’espace sur les côtés du tableau avec les clés extra-left-margin et
extra-right-margin . Ces marges ne sont pas incorporées dans les « nœuds larges ». Dans l’exemple
suivant, nous avons utilisé extra-left-margin et extra-right-margin avec la valeur 3 pt. a a+ b a+ b+ c

a a a+ b
a a a


Attention : Ces nœuds sont reconstruits à partir des contenus des cases et ne correspondent donc
pas nécessairement aux cases délimitées par des filets.
Voici un tableau qui a été composé de la manière
suivante :

\large
\begin{NiceTabular}{w{l}{2cm}ll}[hvlines]
fraise & amande & abricot \\
prune & pêche & poire \\[1ex]
noix & noisette & brugnon
\end{NiceTabular}

fraise amande abricot
prune pêche poire
noix noisette brugnon

73Il existe aussi l’option create-extra-nodes qui est un alias pour la conjonction de create-medium-nodes et create-
large-nodes.

74Il n’y a pas de « nœuds larges » créés dans les rangées et colonnes extérieures (pour ces rangées et colonnes, voir
p. 31).

75Les options left-margin et right-margin prennent des dimensions comme valeurs mais, si aucune valeur n’est
donnée, c’est la valeur par défaut qui est utilisée et elle est égale à \arraycolsep (valeur initiale : 5 pt). Il existe aussi
une option margin pour fixer à la fois left-margin et right-margin.

58

Ci-contre, on a colorié toutes les cases de ce ta-
bleau avec \chessboardcolors (cf. p. 23).

fraise amande abricot
prune pêche poire
noix noisette brugnon

Voici maintenant tous les « nœuds larges » de
ce tableau (sans utilisation de margin ni de
extra-margin).

fraise amande abricot
prune pêche poire
noix noisette brugnon

Les nœuds que l’on vient de décrire ne sont pas accessibles par défaut dans le \CodeBefore (décrit
p. 22).
On peut rendre ces nœuds accessibles dans le \CodeBefore en utilisant la clé create-cell-nodes
du mot-clé \CodeBefore (dans ce cas-là, les nœuds sont créés une première fois avant la construction
du tableau en utilisant des informations écrites dans le fichier aux puis recréés lors de la composition
du tableau proprement dit ; ce mécanisme n’est pas actif par défaut pour des questions d’efficacité).

Voici un exemple d’utilisation de ces nœuds dans le \CodeAfter.

\begin{NiceArray}{c@{\;}c@{\;}c@{\;}c@{\;}c}[create-medium-nodes]
 u_1 &-& u_0 &=& r \\
 u_2 &-& u_1 &=& r \\
 u_3 &-& u_2 &=& r \\
 u_4 &-& u_3 &=& r \\
 & & &\smash{\vdots} & \\
 u_n &-& u_{n-1} &=& r \\[3pt]
 \hline
 u_n &-& u_0 &=& nr \\
\CodeAfter
 \tikz[very thick, red, opacity=0.4, name suffix = -medium]
 \draw (1-1.north west) -- (2-3.south east)
 (2-1.north west) -- (3-3.south east)
 (3-1.north west) -- (4-3.south east)
 (4-1.north west) -- (5-3.south east)
 (5-1.north west) -- (6-3.south east) ;
\end{NiceArray}

u1 − u0 = r
u2 − u1 = r
u3 − u2 = r
u4 − u3 = r...
un − un−1 = r

un − u0 = nr

15.3 Les nœuds indiquant la position des filets

L’extension nicematrix crée un nœud PGF-TikZ nommé simplement i (précédé du préfixe habituel)
à l’intersection du filet horizontal de numéro i et du filet vertical de numéro i (ou plutôt la position
potentielle de ces filets car ils ne sont peut-être pas tracés). Le dernier nœud a aussi un alias nommé
simplement last.
Il existe aussi des nœuds nommés i.1, i.2, i.25, i.3, i.4, i.5, i.6, i.7, i.75, i.8 et i.9 intermédiaires
entre le nœud i et le nœud i+ 1.
Ces nœuds sont accessibles dans le \CodeAfter mais aussi dans le \CodeBefore.

59

tulipe lys
arum violette mauve

muguet dahlia

1
1.5

2
2.5

3
3.5

4

Si on utilise TikZ (on rappelle que nicematrix ne charge pas TikZ mais uniquement pgf qui est une
sous-couche de TikZ), on peut donc accéder (dans le \CodeAfter mais aussi dans le \CodeBefore) à
l’intersection du filet horizontal i et du filet vertical j avec la syntaxe (i-|j).

\begin{NiceMatrix}
\CodeBefore
 \tikz \draw [fill=red!15] (7-|4) |- (8-|5) |- (9-|6) |- cycle ;
\Body
1 \\
1 & 1 \\
1 & 2 & 1 \\
1 & 3 & 3 & 1 \\
1 & 4 & 6 & 4 & 1 \\
1 & 5 & 10 & 10 & 5 & 1 \\
1 & 6 & 15 & 20 & 15 & 6 & 1 \\
1 & 7 & 21 & 35 & 35 & 21 & 7 & 1 \\
1 & 8 & 28 & 56 & 70 & 56 & 28 & 8 & 1
\end{NiceMatrix}

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1

Les nœuds « décimaux » (comme i.4) peuvent être utilisés par exemple pour barrer une rangée (si
on a chargé TikZ).
$\begin{pNiceArray}{ccc|c}
2 & 1 & 3 & 0 \\
3 & 3 & 1 & 0 \\
3 & 3 & 1 & 0
\CodeAfter
 \tikz \draw [red] (3.4-|1) -- (3.4-|last) ;
\end{pNiceArray}$

2 1 3 0
3 3 1 0
3 3 1 0



15.4 Les nœuds correspondant aux commandes \SubMatrix

La commande \SubMatrix disponible dans le \CodeAfter a été présentée p. 42.
Si une commande \SubMatrix est utilisée avec la clé name sous la forme name=MonNom, trois nœuds
PGF-TikZ sont créés avec les noms MonNom-left, MonNom et MonNom-right.
Les nœuds MonNom-left et MonNom-right correspondent aux délimiteurs gauche et droit et le nœud
MonNom correspond à la sous-matrice elle-même.

Dans l’exemple suivant, on a surligné ces trois nœuds (la sous-matrice elle-même a été créée avec
\SubMatrix\{{2-2}{3-3}\}). 

121 23 345 345
45 346 863 444
3462 38458 34 294
34 7 78 309

{ }

60

16 API pour les développeurs

L’extension nicematrix fournit deux variables internes mais publiques76 :

• \g_nicematrix_code_before_tl ;

• \g_nicematrix_code_after_tl.

Ces variables constituent le code du « code-before» (que l’on rentre souvent avec la syntaxe utilisant
\CodeBefore et \Body en début d’environnement) et du « code-after» (que l’on rentre souvent en
fin d’environnement après le mot-clé \CodeAfter). Le développeur peut donc les utiliser pour y
ajouter du code à partir d’une case du tableau (l’affectation devra être globale, ce qui permettra de
sortir de la case, qui est un groupe au sens de TeX).
On remarquera que l’utilisation de \g_nicematrix_code_before_tl nécessite une compilation sup-
plémentaire (car les instructions sont écrites dans le fichier aux pour être utilisées à la compilation
suivante).
Exemple : On souhaite écrire une commande \crossbox qui barre en croix la case courante. Cette
commande prendra en argument optionnel une liste de couples clé-valeur qui sera passée à TikZ avant
que la croix ne soit tracée. On peut alors programmer cette commande \crossbox de la manière
suivante, qui utilise explicitement la variable publique \g_nicematrix_code_before_tl. On utilise
\g_nicematrix_code_before_tl au lieu de \g_nicematrix_code_after_tl pour que la croix soit
tracée avant les éventuels filets verticaux (de manière à avoir un résultat parfait).
\ExplSyntaxOn
\cs_new_protected:Nn __pantigny_crossbox:nnn
 {
 \tikz \draw [#3]
 (#1 -| \inteval { #2 + 1 }) -- (\inteval { #1 + 1 } -| #2)
 (#1 -| #2) -- (\inteval { #1 + 1 } -| \inteval { #2 + 1 }) ;
 }

\NewDocumentCommand \crossbox { ! O { } }
 {
 \tl_gput_right:Ne \g_nicematrix_code_before_tl
 {
 __pantigny_crossbox:nnn
 { \arabic { iRow } }
 { \arabic { jCol } }
 { \exp_not:n { #1 } }
 }
 \ignorespaces
 }
\ExplSyntaxOff

On a utilisé les compteurs LaTeX iRow et jCol fournis par nicematrix (cf. p. 54).
Voici un exemple d’utilisation :

\begin{NiceTabular}{ccc}[hvlines]
\CodeBefore
 \arraycolor{gray!10}
\Body
merlan & requin & cabillaud \\
baleine & \crossbox[red] & morue \\
mante & raie & poule
\end{NiceTabular}

merlan requin cabillaud
baleine morue
mante raie poule

76Conformément aux conventions de LaTeX3, toute variable dont le nom commence par \g_nicematrix ou
\l_nicematrix est publique alors que toute variable dont le nom débute par \g__nicematrix ou par \l__nicematrix
est privée.

61

17 Remarques techniques

Première remarque : l’extension nicematrix doit être chargée après l’extension underscore. Si elle est
chargée avant, une erreur sera levée.

17.1 Lignes diagonales

Par défaut, toutes les lignes diagonales77 d’un même tableau sont « parallélisées ». Cela signifie que
la première diagonale est tracée et que, ensuite, les autres lignes sont tracées parallèlement à la
première (par rotation autour de l’extrémité la plus à gauche de la ligne). C’est pourquoi la position
des instructions \Ddots dans un tableau peut avoir un effet marqué sur le résultat final.

Dans les exemples suivants, la première instruction \Ddots est marquée en couleur :
Exemple avec parallélisation (comportement par défaut) :
$A = \begin{pNiceMatrix}
1 & \Cdots & & 1 \\
a+b & \Ddots & & \Vdots \\
\Vdots & \Ddots & & \\
a+b & \Cdots & a+b & 1
\end{pNiceMatrix}$

A =


1 1

a+ b

a+ b a+ b 1


$A = \begin{pNiceMatrix}
1 & \Cdots & & 1 \\
a+b & & & \Vdots \\
\Vdots & \Ddots & \Ddots & \\
a+b & \Cdots & a+b & 1
\end{pNiceMatrix}$

A =


1 1

a+ b

a+ b a+ b 1


Il est possible de désactiver la parallélisation avec l’option parallelize-diags mise à false :

Le même exemple sans parallélisation : A =


1 1

a+ b

a+ b a+ b 1


On peut choisir l’instruction \Ddots qui sera tracée en premier (et qui servira pour tracer les suivantes
quand la parallélisation est activée) avec la clé draw-first : \Ddots[draw-first].

17.2 Les cases « vides »

L’extension nicematrix utilise en plusieurs occassions le concept de « case vide ». Par exemple, une
instruction comme \Ldots, \Cdots, etc. essaye de déterminer la première case non vide de part et
d’autre de la case considérée. De même, quand la clé corners (cf. p. 16) est utilisée, les coins qui
sont déterminés sont composés de cases vides.
La définition précise de « case vide » est la suivante.

• Une case implicite est vide. Par exemple, dans la matrice suivante

\begin{pmatrix}
a & b \\
c
\end{pmatrix}

la dernière case (deuxième rangée et deuxième colonne) est vide.

77On parle des lignes créées par \Ddots et non des lignes créées par une commande \line dans le \CodeAfter.

62

• Pour les colonnes de type p, m, b, V78 ou X79, la case est vide si (et seulement si) son contenu
dans le codage TeX est vide (il n’y a que des espaces entre les deux esperluettes &).

• Pour les colonnes de type c, l, r, w{...}{...} ou W{...}{...}, la case est vide si (et seulement
si) son rendu TeX est de largeur nulle.

• Une case qui contient la commande \NotEmpty est non vide (et un nœud PGF-TikZ est créé
pour cette case).

• Une case avec seulement une commande \Hspace (ou \Hspace*) est vide. Cette commande
\Hspace est une commande définie par l’extension nicematrix avec la même signification que
\hspace excepté que la case où cette commande est utilisée est considérée comme vide. Cette
commande peut être utilisée pour fixer la largeur des colonnes sans interférer avec le tracé des
lignes en pointillés par nicematrix.

17.3 L’option exterior-arraycolsep

L’environnement {array} insère un espace horizontal égal à \arraycolsep avant et après chaque
colonne. En particulier, il y a un espace égal à \arraycolsep avant et après le tableau. Cette carac-
téristique de l’environnement {array} n’était probablement pas une bonne idée80. L’environnement
{matrix} et ses variantes ({pmatrix}, {vmatrix}, etc.) de amsmath préfèrent supprimer ces espaces
avec des instructions explicites \hskip -\arraycolsep81. L’extension nicematrix fait de même dans
tous ses environnements y compris l’environnement {NiceArray}. Néanmoins, si l’utilisateur sou-
haite que l’environnement {NiceArray} se comporte par défaut comme l’environnement {array} de
array (par exemple pour faciliter l’adaptation d’un document existant), il peut contrôler ce comporte-
ment avec l’option exterior-arraycolsep accessible via la commande \NiceMatrixOptions. Avec
cette option, des espaces extérieurs de longueur \arraycolsep seront insérés dans les environnements
{NiceArray} (les autres environnements de l’extension nicematrix ne sont pas affectés).

17.4 Incompatibilités

Il peut y avoir des incompatibilités de nicematrix avec babel pour les langues qui activent (au sens de
TeX) certains caractères, en particulier le caractère <.
Par exemple, pour l’espagnol, il vaut mieux désactiver au chargement les abréviations avec :
\usepackage[spanish,es-noshorthands]{babel}

L’extension nicematrix est incompatible avec certaines classes qui redéfinissent les environnements
{tabular} et {array}. C’est en particulier le cas de la classe socg-lipics-v2021. Néanmoins, dans
ce cas-là, il est possible de charger la classe avec l’option notab qui requiert justement que {tabular}
ne soit pas redéfini.

L’extension nicematrix n’est pas compatible avec la classe ieeeaccess car cette classe n’est pas compa-
tible avec PGF-TikZ. Il existe néanmoins une parade simple qui consiste à écrire :82

\let\TeXyear\year
\documentclass{IEEEaccess}
\let\year\TeXyear

Pour pouvoir utiliser nicematrix avec la classe aastex631 (de l’American Astronomical Society), on
doit ajouter dans le préambule du fichier les instructions suivantes :
\BeforeBegin{NiceTabular}{\let\begin\BeginEnvironment\let\end\EndEnvironment}

78Les colonnes de type V sont fournies par l’extension varwidth, qui doit être chargée : cf. p. 30
79Pour les colonnes X, voir p. 31
80Dans la documentation de l’amsmath, on peut lire : The extra space of \arraycolsep that array adds on each side

is a waste so we remove it [in {matrix}] (perhaps we should instead remove it from array in general, but that’s a
harder task).

81Et non en insérant @{} de part et d’autre du préambule, ce qui fait que la longueur des \hline n’est pas modifiée
et elle peut paraître trop longue, surtout avec des crochets.

82Voir https://tex.stackexchange.com/questions/528975

63

https://tex.stackexchange.com/questions/528975

\BeforeBegin{NiceArray}{\let\begin\BeginEnvironment}
\BeforeBegin{NiceMatrix}{\let\begin\BeginEnvironment}

L’extension nicematrix n’est pas parfaitement compatible avec les classes et extensions de LuaTeX-ja :
la détection des coins vides (cf. p. 16) risque d’être erronée dans certaines circonstances.

L’extension nicematrix n’est pas parfaitement compatible avec l’extension arydshln (parce que cette
extension redéfinit de nombreuses commandes internes de array) et les colonnes V de l’extension
boldline ne sont pas prises en charge (car la lettre V est réservée pour les colonnes V de varwidth). De
toutes manières, nicematrix fournit, avec la clé custom-line (cf. partie 5.3.5, p. 18) des outils pour
définir des filets en tiretés ou de différentes épaisseurs.

Les colonnes d de l’extension dcolumn ne sont pas prises en compte (mais on peut utiliser les colonnes
S de siunitx).

17.5 Compatibilité avec le Tagging Project de LaTeX

Depuis la version 7.0, l’extension nicematrix est compatible avec le Tagging Project de LaTeX visant à
la création automatique de PDF balisés. Pour le moment, seuls les tableaux simples sont correctement
balisés.
Voici un exemple de code qui va produire un PDF correctement balisé.

\DocumentMetadata{tagging = on}
\documentclass{article}
\usepackage{lmodern}
\usepackage{nicematrix}

\begin{document}

\begin{center}
\tagpdfsetup{table/header-rows=1}
\begin{NiceTabular}{ccc}[hvlines]
First name & Last name & Age \\
Paul & Imbert & 66 \\
John & Sarrus & 23 \\
Liz & Taylor & 100 \\
George & Adams & 34
\end{NiceTabular}
\end{center}

\end{document}

18 Exemples

18.1 Utilisation de la clé « tikz » de la commande \Block

La clé tikz de la commande \Block n’est disponible que lorsque TikZ est chargé.83

Pour l’exemple suivant, la bibliothèque patterns de TikZ doit aussi être chargée.

\usetikzlibrary{patterns}

\ttfamily \small
\begin{NiceTabular}{X[m]X[m]X[m]}[hvlines,cell-space-limits=3pt,rounded-corners]
 \Block[tikz={pattern=grid,pattern color=lightgray}]{}
 {pattern = grid,\\ pattern color = lightgray}

83Par défaut, nicematrix ne charge que pgf, qui est une sous-couche de TikZ.

64

& \Block[tikz={pattern = north west lines,pattern color=blue}]{}
 {pattern = north west lines,\\ pattern color = blue}
& \Block[tikz={outer color = red!50, inner color=white }]{2-1}
 {outer color = red!50,\\ inner color = white} \\
 \Block[tikz={pattern = sixpointed stars, pattern color = blue!15}]{}
 {pattern = sixpointed stars,\\ pattern color = blue!15}
& \Block[tikz={left color = blue!50}]{}
 {left color = blue!50} \\
\end{NiceTabular}

pattern = grid,
pattern color = lightgray

pattern = north west lines,
pattern color = blue outer color = red!50,

inner color = whitepattern = sixpointed stars,
pattern color = blue!15 left color = blue!50

Dans l’exemple suivant, on utilise la clé tikz pour hachurer une rangée du tableau. On remarquera
que l’on utilise la clé transparent de la commande \Block pour que les filets soient tracés dans le
bloc.84

\begin{NiceTabular}{ccc}[hvlines]
\CodeBefore
 \columncolor[RGB]{169,208,142}{2}
\Body
un & deux & trois \\
\Block[transparent, tikz={pattern = north west lines, pattern color = gray}]{1-*}{}
quatre & cinq & six \\
sept & huit & neuf
\end{NiceTabular}

un deux trois
quatre cinq six
sept huit neuf

18.2 Utilisation avec tcolorbox
Voici un exemple d’utilisation de {NiceTabular} dans une commande \tcbox de tcolorbox. On a
utilisé la clé hvlines-except-borders pour faire afficher tous les filets sauf ceux sur les bords (qui
sont, bien entendu, ajoutés par tcolorbox).

\tcbset
 {
 colframe = blue!50!black ,
 colback = white ,
 fonttitle = \bfseries ,
 nobeforeafter ,
 center title
 }

\tcbox
 [
 left = 0mm ,
 right = 0mm ,
 top = 0mm ,
 bottom = 0mm ,
 boxsep = 0mm ,

84Par défaut, les filets ne sont pas tracés dans les blocs créés avec la commande \Block (cf. section 5 p. 13) : la clé
transparent permet qu’ils le soient (le block devient ainsi transparent aux filets extérieurs).

65

 toptitle = 0.5mm ,
 bottomtitle = 0.5mm ,
 title = My table
]
 {
 \renewcommand{\arraystretch}{1.2}% <-- the % is mandatory here
 \begin{NiceTabular}{rcl}[hvlines-except-borders,rules/color=blue!50!black]
 \CodeBefore
 \rowcolor{red!15}{1}
 \Body
 One & Two & Three \\
 Men & Mice & Lions \\
 Upper & Middle & Lower
 \end{NiceTabular}
 }

My table
One Two Three
Men Mice Lions

Upper Middle Lower

18.3 Notes dans les tableaux

Les outils de nicematrix pour les notes dans les tableaux ont été présentés à la partie 13 p. 46.

Imaginons que l’on souhaite numéroter les notes de tableau (celles construites avec \tabularnote)
avec des astérisques.85

On commence par écrire une commande \stars similaire aux commandes classiques \arabic, \alph,
\Alph, etc. mais qui produit un nombre d’astérisques égal à son argument.86

\ExplSyntaxOn
\NewDocumentCommand { \stars } { m }
 { \prg_replicate:nn { \value { #1 } } { \(\star \) } }
\ExplSyntaxOff

Bien entendu, on change le style des notes avec la clé notes/style. Mais, il serait bon aussi de changer
certains paramètres du type de liste (au sens de enumitem) utilisé pour composer les notes après le
tableau. On demande de composer les labels avec une largeur égale à celle du plus grand des labels. Or,
le label le plus large est bien entendu celui avec le maximum d’astérisques. On connaît ce nombre : il
est égal à \value{tabularnote} (car tabularnote est le compteur LaTeX utilisé par \tabularnote
et il est donc égal à la fin au nombre total de notes dans le tableau). On utilise alors la clé widest*
de enumitem pour demander une largeur de label correspondante : widest*=\value{tabularnote}.
\NiceMatrixOptions
 {
 notes =
 {
 style = \stars{#1} ,
 enumitem-keys =
 {
 widest* = \value{tabularnote} ,
 align = right
 }
 }
 }

85Bien entendu, il faut qu’il y en ait très peu : trois paraît un maximum.
86Ou plutôt : à la valeur de son argument.

66

\begin{NiceTabular}{@{}llr@{}}
\toprule \RowStyle{\bfseries}
Nom & Prénom & Date de naissance \\
\midrule
Achard\tabularnote{La famille Achard est une très ancienne famille du Poitou.}
& Jacques & 5 juin 1962 \\
Lefèbvre\tabularnote{Le patronyme Lefebvre est une altération de Lefébure.}
& Mathilde & 23 mai 1988 \\
Vanesse & Stéphanie & 30 octobre 1994 \\
Dupont & Chantal & 15 janvier 1998 \\
\bottomrule
\end{NiceTabular}

Nom Prénom Date de naissance
Achard? Jacques 5 juin 1962
Lefebvre?? Mathilde 23 mai 1988
Vanesse Stéphanie 30 octobre 1994
Dupont Chantal 15 janvier 1998
?La famille Achard est une très ancienne fa-
mille du Poitou.

??Le patronyme Lefebvre est une altération de
Lefébure.

18.4 Lignes en pointillés

Un exemple pour le résultant de deux polynômes :

\setlength{\extrarowheight}{1mm}
\begin{vNiceArray}{cccc:ccc}[columns-width=6mm]
a_0 & && &b_0 & & \\
a_1 &\Ddots&& &b_1 &\Ddots& \\
\Vdots&\Ddots&& &\Vdots &\Ddots&b_0 \\
a_p & &&a_0 & & &b_1 \\
 &\Ddots&&a_1 &b_q & &\Vdots\\
 & &&\Vdots & &\Ddots& \\
 & &&a_p & & &b_q
\end{vNiceArray}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 b0

a1 b1

b0

ap a0 b1

a1 bq

ap bq

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Un exemple avec un système linéaire. Rappelons que xdots/nullify annule les espaces horizontaux
et verticaux créés par les commands \Cdots, \Vdots, etc.

67

\begin{pNiceMatrix}[vlines=-1,xdots/nullify,last-col,code-for-last-col=\scriptstyle]
1 & 1 & 1 &\Cdots & & 1 & 0 & \\
0 & 1 & 0 &\Cdots & & 0 & & L_2 \gets L_2-L_1 \\
0 & 0 & 1 &\Ddots & & \Vdots & & L_3 \gets L_3-L_1 \\

& & &\Ddots & & & \Vdots & \Vdots \\
\Vdots & & &\Ddots & & 0 & \\
0 & & &\Cdots & 0 & 1 & 0 & L_n \gets L_n-L_1
\end{pNiceMatrix}$


1 1 1 1 0
0 1 0 0 L2←L2−L1

0 0 1 L3←L3−L1

0
0 0 1 0 Ln←Ln−L1



18.5 Des lignes pointillées qui ne sont plus pointillées

L’option line-style permet de changer le style des lignes tracées par \Ldots, \Cdots, etc. On peut
de ce fait tracer des lignes qui ne sont plus pointillées (TikZ doit être chargé).
\setcounter{MaxMatrixCols}{12}
\newcommand{\blue}{\color{blue}}
\[\begin{pNiceMatrix}[last-row,last-col,xdots={nullify,line-style={dashed,blue}}]
1& & & \Vdots & & & & \Vdots \\
& \Ddots[line-style=standard] \\
& & 1 \\
\Cdots & & & \blue 0 & \Cdots & & & \blue 1 & & & \Cdots & \blue \leftarrow i \\
& & & & 1 \\
& & &\Vdots & & \Ddots[line-style=standard] & & \Vdots \\
& & & & & & 1 \\
\Cdots & & & \blue 1 & \Cdots & & \Cdots & \blue 0 & & & \Cdots & \blue \leftarrow j \\
& & & & & & & & 1 \\
& & & & & & & & & \Ddots[line-style=standard] \\
& & & \Vdots & & & & \Vdots & & & 1 \\
& & & \blue \overset{\uparrow}{i} & & & & \blue \overset{\uparrow}{j} \\
\end{pNiceMatrix}\]



1

1
0 1 ← i

1

1
1 0 ← j

1

1
↑
i

↑
j



On peut même tracer des lignes continues.87

\NiceMatrixOptions{xdots={horizontal-labels,line-style = <->}}

87Dans ce document, la bibliothèque arrows.meta de TikZ a été chargée, ce qui a une incidence sur la forme des
pointes de flèches.

68

$\begin{pNiceArray}{ccc|cc}[first-row,last-col,margin]
\Hdotsfor{3}^{3} & \Hdotsfor{2}^{2} \\
2 & 1 & 1 & 1 & 1 & \Vdotsfor{3}^{3}\\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
\Hline
1 & 1 & 1 & 1 & 1 & \Vdotsfor{2}^{2}\\
1 & 1 & 1 & 1 & 1 \\
\end{pNiceArray}$


2 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1



3 2

3

2

Si on veut mettre les labels sur les flèches, il convient d’utiliser le caractère spécial « :» au lieu
de « ^» :

\NiceMatrixOptions{xdots={horizontal-labels,line-style = <->}}

$\begin{pNiceArray}{ccc|cc}[first-row,last-col,margin]
\Hdotsfor{3}:{3} & \Hdotsfor{2}:{2} \\
2 & 1 & 1 & 1 & 1 & \Vdotsfor{3}:{3} \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
\Hline
1 & 1 & 1 & 1 & 1 &
\Vdotsfor{2}:{2 \rlap{ \smash{lignes}}} \\
1 & 1 & 1 & 1 & 1 \\
\end{pNiceArray}$


2 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


3 2

3

2 lignes

Si on préfère des accolades comme celles proposées par la bibliothèque decorations.pathreplacing de
TikZ, le mieux est d’utiliser les commandes \Hbrace et \Vbrace proposées par nicematrix (cf. p. 39).88

\NiceMatrixOptions{xdots/horizontal-labels}

$\begin{pNiceArray}{ccc|cc}[first-row,last-col,margin]
\Hbrace{3}{3} & \Hbrace{2}{2} \\
2 & 1 & 1 & 1 & 1 & \Vbrace{3}{3} \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
\Hline
1 & 1 & 1 & 1 & 1 & \Vbrace{2}{2} \\
1 & 1 & 1 & 1 & 1 \\
\end{pNiceArray}$


2 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1



3 2

3

2

Il est possible de changer le style TikZ des accolades en changeant le style nicematrix/brace. Dans
l’exemple suivant, on suppose que l’extension calligraphy de TikZ a été chargée :

\usetikzlibrary{calligraphy}

\NiceMatrixOptions{xdots/horizontal-labels}
\tikzset
 {
 nicematrix/brace/.style =
 {
 decoration =
 {
 calligraphic brace ,
 amplitude = 0.4 em ,
 raise = -0.25 em
 } ,

88Ces commandes ne sont disponibles que si TikZ a été chargée ainsi que la bibliothèque decorations.pathreplacing de
TikZ : \usepackage{TikZ} \usetikzlibrary{decorations.pathreplacing}.

69

 line width = 0.1 em ,
 decorate ,
 }
 }

$\begin{pNiceArray}{ccc|cc}[first-row,last-col,margin]
\Hbrace{3}{3} & \Hbrace{2}{2} \\
2 & 1 & 1 & 1 & 1 & \Vbrace{3}{3} \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
\Hline
1 & 1 & 1 & 1 & 1 & \Vbrace{2}{2} \\
1 & 1 & 1 & 1 & 1 \\
\end{pNiceArray}$


2 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1



3 2

3

2

Si on préfère les accolades de la fonte mathématique courante, il convient d’utiliser les commandes
\SubMatrix, \OverBrace et \UnderBrace dans le \CodeAfter.
$\begin{pNiceArray}{ccc|cc}[margin,last-col]
2 & 1 & 1 & 1 & 1 & \Block{3-1}{\quad 3} \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
\Hline
1 & 1 & 1 & 1 & 1 & \Block{2-1}{\quad 2} \\
1 & 1 & 1 & 1 & 1 \\
\CodeAfter
 \OverBrace[shorten,yshift=1.5mm]{1-1}{1-3}{3}
 \OverBrace[shorten,yshift=1.5mm]{1-4}{1-5}{2}
 \SubMatrix{.}{1-1}{3-5}{\rbrace}[xshift=3.5mm]
 \SubMatrix{.}{4-1}{5-5}{\rbrace}[xshift=3.5mm]
\end{pNiceArray}$


2 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

3

2



3︷ ︸︸ ︷ 2︷︸︸︷ }

18.6 Lignes en tiretés

Dans l’exemple suivant, on utilise des commandes \Block pour tracer des filets en tiretés. Cet exemple
nécessite que TikZ soit chargé (par \usepackage{tikz}).
\begin{pNiceMatrix}
\Block[borders={bottom,right,tikz=dashed}]{2-2}{}
1 & 2 & 0 & 0 & 0 & 0 \\
4 & 5 & 0 & 0 & 0 & 0 \\
0 & 0 & \Block[borders={bottom,top,right,left,tikz=dashed}]{2-2}{}
 7 & 1 & 0 & 0 \\
0 & 0 & -1 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & \Block[borders={left,top,tikz=dashed}]{2-2}{}
 3 & 4 \\
0 & 0 & 0 & 0 & 1 & 4
\end{pNiceMatrix} 

1 2 0 0 0 0
4 5 0 0 0 0
0 0 7 1 0 0
0 0 −1 2 0 0
0 0 0 0 3 4
0 0 0 0 1 4



18.7 Empilements de matrices

On a souvent besoin de présenter des matrices empilées les unes au-dessus des autres (par exemple
pour la résolution de systèmes linéaires).

70

Pour avoir les colonnes alignées les unes sous les autres, on peut imposer une largeur commune à
toutes les colonnes, ce que l’on fait dans l’exemple suivant avec l’environnement {NiceMatrixBlock}
et l’option auto-columns-width.

\begin{NiceMatrixBlock}[auto-columns-width]
\NiceMatrixOptions
 {
 light-syntax,
 last-col, code-for-last-col = \color{blue}\scriptstyle,
 vlines = 5 ,
 matrix/columns-type = r ,
 no-cell-nodes % facultatif
 }
\setlength{\extrarowheight}{1mm}

\quad $\begin{pNiceMatrix}
12 -8 7 5 3 {} ;
 3 -18 12 1 4 ;
-3 -46 29 -2 -15 ;
 9 10 -5 4 7
\end{pNiceMatrix}$

\smallskip
\quad $\begin{pNiceMatrix}
12 -8 7 5 3 ;
0 64 -41 1 19 { L_2 \gets L_1-4L_2 } ;
0 -192 123 -3 -57 { L_3 \gets L_1+4L_3 } ;
0 -64 41 -1 -19 { L_4 \gets 3L_1-4L_4 } ;
\end{pNiceMatrix}$

\smallskip
\quad $\begin{pNiceMatrix}
12 -8 7 5 3 ;
0 64 -41 1 19 ;
0 0 0 0 0 { L_3 \gets 3 L_2 + L_3 }
\end{pNiceMatrix}$

\smallskip
\quad $\begin{pNiceMatrix}
12 -8 7 5 3 {} ;
0 64 -41 1 19 ;
\end{pNiceMatrix}$
\end{NiceMatrixBlock}

12 −8 7 5 3

3 −18 12 1 4

−3 −46 29 −2 −15
9 10 −5 4 7




12 −8 7 5 3

0 64 −41 1 19 L2←L1−4L2

0 −192 123 −3 −57 L3←L1+4L3

0 −64 41 −1 −19 L4←3L1−4L4


 12 −8 7 5 3

0 64 −41 1 19

0 0 0 0 0 L3←3L2+L3


(

12 −8 7 5 3

0 64 −41 1 19

)

71

On constate que la dernière matrice n’est pas parfaitement alignée avec les précédentes. C’est que les
parenthèses, en LaTeX, n’ont pas toutes la même largeur suivant leur taille.

Pour résoudre ce problème, on peut demander que les délimiteurs soient composés avec leur largeur
maximale grâce à la clé booléenne delimiters/max-width .

\begin{NiceMatrixBlock}[auto-columns-width]
\NiceMatrixOptions
 {
 delimiters/max-width,
 light-syntax,
 last-col, code-for-last-col = \color{blue}\scriptstyle,
 vlines = 5 ,
 matrix/columns-type = r ,
 no-cell-nodes % facultatif
 }
\setlength{\extrarowheight}{1mm}

\quad $\begin{pNiceMatrix}
12 -8 7 5 3 {} ;
 3 -18 12 1 4 ;
-3 -46 29 -2 -15 ;
 9 10 -5 4 7
\end{pNiceMatrix}$
...
\end{NiceMatrixBlock}

12 −8 7 5 3

3 −18 12 1 4

−3 −46 29 −2 −15
9 10 −5 4 7




12 −8 7 5 3

0 64 −41 1 19 L2←L1−4L2

0 −192 123 −3 −57 L3←L1+4L3

0 −64 41 −1 −19 L4←3L1−4L4


 12 −8 7 5 3

0 64 −41 1 19

0 0 0 0 0 L3←3L2+L3


(

12 −8 7 5 3

0 64 −41 1 19

)

Si on souhaite un alignement des colonnes des différentes matrices sans imposer la même largeur
à toutes les colonnes, on peut utiliser un grand tableau unique et placer les parenthèses avec des
commandes \SubMatrix dans le \CodeAfter. Bien sûr, ce tableau ne pourra pas être coupé par un
saut de page.

\setlength{\extrarowheight}{1mm}
\[\begin{NiceMatrix}%
 [r, last-col=6, code-for-last-col = \scriptstyle \color{blue}]
12 & -8 & 7 & 5 & 3 \\
 3 & -18 & 12 & 1 & 4 \\
-3 & -46 & 29 &-2 &-15 \\
 9 & 10 &-5 &4 & 7 \\[1mm]
12 & -8 & 7 &5 & 3 \\
0 & 64 &-41 & 1 & 19 & L_2 \gets L_1-4L_2 \\
0 & -192 &123 &-3 &-57 & L_3 \gets L_1+4L_3 \\
0 & -64 & 41 &-1 &-19 & L_4 \gets 3L_1-4L_4 \\[1mm]

72

12 & -8 &7 &5 & 3 \\
0 & 64 &-41 &1 &19 \\
0 & 0 &0 &0 & 0 & L_3 \gets 3L_2+L_3 \\[1mm]
12 & -8 &7 &5 & 3 \\
0 & 64 &-41 & 1 & 19 \\
\CodeAfter [sub-matrix/vlines=4]
 \SubMatrix({1-1}{4-5})
 \SubMatrix({5-1}{8-5})
 \SubMatrix({9-1}{11-5})
 \SubMatrix({12-1}{13-5})
\end{NiceMatrix}\]

12 −8 7 5 3

3 −18 12 1 4

−3 −46 29 −2 −15
9 10 −5 4 7

12 −8 7 5 3

0 64 −41 1 19 L2←L1−4L2

0 −192 123 −3 −57 L3←L1+4L3

0 −64 41 −1 −19 L4←3L1−4L4

12 −8 7 5 3

0 64 −41 1 19

0 0 0 0 0 L3←3L2+L3

12 −8 7 5 3

0 64 −41 1 19










()

Dans ce tableau, les instructions \SubMatrix sont exécutées après la composition du tableau et les
traits verticaux sont donc tracés sans espacer les colonnes.

En fait, on peut avec la clé vlines-in-sub-matrix choisir un spécificateur dans le préambule du
tableau pour indiquer des filets verticaux qui seront tracés dans les \SubMatrix uniquement (en
espaçant les colonnes).

\setlength{\extrarowheight}{1mm}
\[\begin{NiceArray}
 [
 vlines-in-sub-matrix=I,
 last-col,
 code-for-last-col = \scriptstyle \color{blue}
]
 {rrrrIr}
12 & -8 & 7 & 5 & 3 \\
 3 & -18 & 12 & 1 & 4 \\
-3 & -46 & 29 &-2 &-15 \\
 9 & 10 &-5 &4 & 7 \\[1mm]
12 & -8 & 7 &5 & 3 \\
0 & 64 &-41 & 1 & 19 & L_2 \gets L_1-4L_2 \\
0 & -192 &123 &-3 &-57 & L_3 \gets L_1+4L_3 \\
0 & -64 & 41 &-1 &-19 & L_4 \gets 3L_1-4L_4 \\[1mm]
12 & -8 &7 &5 & 3 \\
0 & 64 &-41 &1 &19 \\
0 & 0 &0 &0 & 0 & L_3 \gets 3L_2+L_3 \\[1mm]
12 & -8 &7 &5 & 3 \\
0 & 64 &-41 & 1 & 19 \\
\CodeAfter

73

 \SubMatrix({1-1}{4-5})
 \SubMatrix({5-1}{8-5})
 \SubMatrix({9-1}{11-5})
 \SubMatrix({12-1}{13-5})
\end{NiceArray}\]

12 −8 7 5 3

3 −18 12 1 4

−3 −46 29 −2 −15
9 10 −5 4 7

12 −8 7 5 3

0 64 −41 1 19 L2←L1−4L2

0 −192 123 −3 −57 L3←L1+4L3

0 −64 41 −1 −19 L4←3L1−4L4

12 −8 7 5 3

0 64 −41 1 19

0 0 0 0 0 L3←3L2+L3

12 −8 7 5 3

0 64 −41 1 19










()

18.8 Comment surligner les cases d’une matrice

Pour mettre en évidence une case d’une matrice, il est possible de « dessiner » cette case avec la clé
draw de la commande \Block (c’est l’un des usages des blocs mono-case89).
$\begin{pNiceArray}{>{\strut}cccc}[margin,rules/color=blue,no-cell-nodes]
\Block[draw]{}{a_{11}} & a_{12} & a_{13} & a_{14} \\
a_{21} & \Block[draw]{}{a_{22}} & a_{23} & a_{24} \\
a_{31} & a_{32} & \Block[draw]{}{a_{33}} & a_{34} \\
a_{41} & a_{42} & a_{43} & \Block[draw]{}{a_{44}} \\
\end{pNiceArray}$ 

a12 a13 a14
a21 a23 a24
a31 a32 a34
a41 a42 a43

a11
a22

a33
a44


On remarquera que les traits que l’on vient de tracer sont dessinés après la matrice sans modifier
la position des composantes de celle-ci. En revanche, les traits tracés par \hline, \Hline, le spéci-
ficateur « |» ou les options hlines, vlines, hvlines et hvlines-except-borders « écartent » les
composantes de la matrice.90

Il est possible de colorier une rangée avec \rowcolor dans le \CodeBefore (ou avec \rowcolor dans
une case de la rangée).

89On rappelle que si le premier argument obligatoire de la commande \Block est laissé vide, le bloc est considéré
comme mono-case.

90Pour la commande \cline, voir la remarque p. 14.

74

\begin{pNiceArray}{>{\strut}cccc}% <-- % obligatoire
 [margin, extra-margin=2pt,no-cell-nodes]
 \rowcolor{red!15}A_{11} & A_{12} & A_{13} & A_{14} \\
 A_{21} & \rowcolor{red!15}A_{22} & A_{23} & A_{24} \\
 A_{31} & A_{32} & \rowcolor{red!15}A_{33} & A_{34} \\
 A_{41} & A_{42} & A_{43} & \rowcolor{red!15}A_{44}
\end{pNiceArray} 

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44


Les possibilités de réglages sont néanmoins limitées. C’est pourquoi nous présentons ici une autre
méthode pour surligner une rangée d’une matrice.

Cet exemple et les suivants nécessitent d’avoir chargé TikZ (nicematrix ne charge que pgf, qui est une
sous-couche de TikZ) ainsi que la bibliothèque TikZ fit, ce qui peut se faire avec les deux instructions
suivantes dans le préambule du document :

\usepackage{tikz}
\usetikzlibrary{fit}

Nous créons un nœud TikZ rectangulaire qui englobe les nœuds de la deuxième rangée en utilisant
les outils de la bibliothèque TikZ fit. Ces nœuds ne sont pas créés par défaut dans le \CodeBefore
(par souci d’efficacité). Il faut utiliser la clé create-cell-nodes du \CodeBefore pour demander
leur création.

\tikzset{highlight/.style={rectangle,
 fill=red!15,
 rounded corners = 0.5 mm,
 inner sep=1pt,
 fit=#1}}

$\begin{bNiceMatrix}
\CodeBefore [create-cell-nodes]
 \tikz \node [highlight = (2-1) (2-last)] {} ;
\Body
0 & \Cdots & 0 \\
1 & \Cdots & 1 \\
0 & \Cdots & 0 \\
\end{bNiceMatrix}$ 0 0

1 1
0 0



On considère maintenant la matrice suivante. Si on veut surligner chaque rangée de la matrice, on
peut utiliser la technique précédente trois fois.
\[\begin{pNiceArray}{ccc}[last-col, margin = 2pt]
\CodeBefore [create-cell-nodes]
 \begin{tikzpicture}
 \node [highlight = (1-1) (1-last)] {} ;
 \node [highlight = (2-1) (2-last)] {} ;
 \node [highlight = (3-1) (3-last)] {} ;
 \end{tikzpicture}
\Body

75

a & a + b & a + b + c & L_1 \\
a & a & a + b & L_2 \\
a & a & a & L_3
\end{pNiceArray}\]  a a+ b a+ b+ c L1

a a a+ b L2

a a a L3


Le résultat peut paraître décevant. On peut l’améliorer en utilisant les « nœuds moyens » au lieu des
« nœuds normaux ».
\[\begin{pNiceArray}{ccc}[last-col, margin = 2pt, create-medium-nodes]
\CodeBefore [create-cell-nodes]
 \begin{tikzpicture} [name suffix = -medium]
 \node [highlight = (1-1) (1-last)] {} ;
 \node [highlight = (2-1) (2-last)] {} ;
 \node [highlight = (3-1) (3-last)] {} ;
 \end{tikzpicture}
\Body
a & a + b & a + b + c & L_1 \\
a & a & a + b & L_2 \\
a & a & a & L_3
\end{pNiceArray}\]  a a+ b a+ b+ c L1

a a a+ b L2

a a a L3



18.9 Utilisation de \SubMatrix dans le \CodeBefore

Dans l’exemple suivant, on illustre le produit mathématique de deux matrices.
L’ensemble de la figure est un environnement {NiceArray} et les trois paires de parenthèses ont été
rajoutées avec \SubMatrix dans le \CodeBefore.

Cj

b11 b1j b1n

bkj

bn1 bnj bnn

a11 a1n

Li ai1 aik ain cij

an1 ann










\tikzset{highlight/.style={rectangle,
fill=red!15,
rounded corners = 0.5 mm,
inner sep=1pt,
fit=~#1}}

\[\begin{NiceArray}{*{6}{c}@{\hspace{6mm}}*{5}{c}}[xdots/nullify]
\CodeBefore [create-cell-nodes]
 \SubMatrix({2-7}{6-last})
 \SubMatrix({7-2}{last-6})

76

 \SubMatrix({7-7}{last-last})
 \begin{tikzpicture}
 \node [highlight = (9-2) (9-6)] { } ;
 \node [highlight = (2-9) (6-9)] { } ;
 \end{tikzpicture}
\Body
 & & & & & & & & \color{blue}\scriptstyle C_j \\
 & & & & & & b_{11} & \Cdots & b_{1j} & \Cdots & b_{1n} \\
 & & & & & & \Vdots & & \Vdots & & \Vdots \\
 & & & & & & & & b_{kj} \\
 & & & & & & & & \Vdots \\
 & & & & & & b_{n1} & \Cdots & b_{nj} & \Cdots & b_{nn} \\[3mm]
 & a_{11} & \Cdots & & & a_{1n} \\
 & \Vdots & & & & \Vdots & & & \Vdots \\
\color{blue}\scriptstyle L_i
 & a_{i1} & \Cdots & a_{ik} & \Cdots & a_{in} & \Cdots & & c_{ij} \\
 & \Vdots & & & & \Vdots \\
 & a_{n1} & \Cdots & & & a_{nn} \\
\CodeAfter
\tikz \draw [gray,shorten > = 1mm, shorten < = 1mm] (9-4.north) to [bend left] (4-9.west) ;
\end{NiceArray}\]

18.10 Un tableau triangulaire

Dans l’exemple suivant, on utilise le style PGF-Tikz nicematrix/cell-node pour faire tourner le
contenu des cases (rotation que l’on compense ensuite en faisant tourner tout le tableau avec la
commande \adjustbox de l’extension éponyme, qui doit donc être chargée préalablement).

\pgfset
 {
 nicematrix/cell-node/.append style =
 { text/rotate = 45, minimum size = 6 mm }
 }

\setlength{\tabcolsep}{0pt}

\adjustbox{rotate = -45, set depth = 6mm + 1.414 \arrayrulewidth}
 {\begin{NiceTabular} [hvlines, corners=SE, baseline = line-9] { cccccccc }
 \CodeBefore
 \chessboardcolors{red!15}{blue!15}
 \Body
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 1 & 3 & 6 & 10 & 15 & 21 \\
 1 & 4 & 10 & 20 & 35 \\
 1 & 5 & 15 & 35 \\
 1 & 6 & 21 \\
 1 & 7 \\
 1
 \end{NiceTabular}}

77

1

1

1

1

1

1

1

1

1

2

3

4

5

6

7

1

3

6

10

15

21

1

4

10

20

35

1

5

15

35

1

6

21

1

71

78

Index

Symbols
&-in-blocks, 12

A
ampersand-in-blocks, 12
\arraycolor (commande du \CodeBefore), 22
\arrayrulecolor, 14
\arrayrulewidth, 14
auto-columns-width

(clé de {NiceMatrixBlock}), 29, 71
\AutoNiceMatrix, 54

B
baseline (clé pour un environnement), 5
\BAutoNiceMatrix, 54
\bAutoNiceMatrix, 54
blkarray (extension), 40
\Block, 6
Blocs dans les tableaux, 6–13
{BNiceArray}, 4
{bNiceArray}, 4
{BNiceMatrix}, 4
{bNiceMatrix}, 4
\Body, voir \CodeBefore
bold (clé de \RowStyle), 28
booktabs (extension), 13
borders (clé de \Block), 7
bottomrule (sous-clé de « notes »), 49
brace (nicematrix/brace est un style TikZ

utilisé par \Hbrace et \Vbrace), 39
brace-shift (clé de \Hbrace et \Vbrace), 39

C
caption (clé de {NiceTabular}), 46
caption-above, 46
ccommand (clé de « custom-line »), 18
\Cdots, 33
\cdottedline, 20
cell-space-bottom-limit, 4, 28
cell-space-limits, 4, 28
cell-space-top-limit, 4, 28
\cellcolor

commande du \CodeBefore, 22
commande en tableau, 26

cellspace (extension), 4
\chessboardcolors

(commande du \CodeBefore), 22, 77
\cline (commande de LaTeX), 14
code (clé de \SubMatrix), 43
code-after, 41
code-before

clé pour un environnement, 21
sous-clé de « notes », 49

code-for-first-col, 32

code-for-first-row, 32, 53, 68
code-for-last-col, 32, 53, 67, 68
code-for-last-row, 32, 53
\CodeAfter, 41–46, 76
\CodeBefore...\Body, 21, 75–77
Coins (les — vides), 16, 77
Coins arrondis

pour un bloc, 7
pour un tableau, 51

color
clé de \Block, 7
clé de \OverBrace et \UnderBrace, 45
clé de \RowStyle, 28
clé de « custom-line », 18
clé des lignes pointillées, 37
pour les délimiteurs de matrices, 55

colortbl (extension), 21
cols (clé de \rowcolors du \CodeBefore), 23
\columncolor

commande dans le préambule d’un environ-
nement, 26

commande du \CodeBefore, 22, 65
columns-type (clé de {NiceMatrix}, etc.), 52
columns-width, 29
command (clé de « custom-line »), 18
corners (clé d’un environnement), 16, 25
Couleur

de fond pour les cases, 21
des délimiteurs de matrices, 55
des filets, 14

create-cell-nodes (clé de \CodeBefore), 59, 75, 76
create-extra-nodes, 58
create-large-nodes, 58
create-medium-nodes, 58, 76
\crossbox (définie dans un exemple), 61
custom-line, 18–21

D
\Ddots, 33, 62, 67
\definecolorseries (commande de xcolor), 25
delimiters

—/color pour \SubMatrix, 43
—/color pour un environnement, 55
—/max-width, 72

délimiteurs dans les préambules, 40
detect-duplicates (sous-clé de « notes »), 49
\diagbox, 17
dotted (clé de « custom-line »), 20
draw (clé de \Block), 7, 74
draw-first (clé de \Ddots et \Iddots), 62

E
empty (clé de \TikzEveryCell), 46

79

\EmptyColumn (commande du \CodeBefore), 26
\EmptyRow (commande du \CodeBefore), 26
end (clé pour les filets), 21
end-of-row (à utiliser avec light-syntax), 55
enumitem (extension requise pour utiliser

\tabularnote), 47, 66
enumitem-keys (sous-clé de « notes »), 49, 66
enumitem-keys-para (sous-clé de « notes »), 49
exterior-arraycolsep, 63
extra-height (clé de \SubMatrix), 43
extra-left-margin, 58
extra-right-margin, 58

F
Filets dans les tableaux, 13–21
fill

clé de \Block, 7
clé de \RowStyle, 28

first-col, 31
first-row, 31, 53
footnote (extension), 47
footnote (clé), 47
footnotehyper (extension), 47
footnotehyper (clé), 47

G
\g_nicematrix_code_after_tl, 61
\g_nicematrix_code_before_tl, 61

H
\Hbrace, 39
\Hdotsfor, 35
\hdottedline, 20
highlight (style TikZ défini dans

un exemple), 75
\Hline, 15
hlines, voir Filets

clé de \Block, 7
clé de \SubMatrix, 43
clé pour un environnement, 15

horizontal-label(s) (clé des lignes pointillées), 37
\Hspace, 34
hvlines, voir Filets

clé de \Block, 7
clé de \SubMatrix, 43
clé pour un environnement, 16

hvlines-except-borders, 16, 66

I
\Iddots, 33, 62
Incompatibilités, 63
inter (clé des lignes pointillées), 37
iRow (compteur LaTeX), 54

J
jCol (compteur LaTeX), 54

L
label (clé de {NiceTabular}), 46
label-in-list (sous-clé de « notes »), 49

label-in-tabular (sous-clé de « notes »), 49
Largeur des colonnes, 29–31
last-col, 31, 53, 67
last-row, 31, 53
\Ldots, 33
\left : utilisé par nicematrix

pour des délimiteurs
dans les préambules, 40

left-margin, 58
left-shorten (clé de \OverBrace et

\UnderBrace), 45
left-xshift (clé de \SubMatrix), 43
Légende des tableaux, 46
letter (clé de « custom-line »), 18
light-syntax, 55
light-syntax-expanded, 55
Lignes en pointillés, voir Pointillés
\line (commande du \CodeAfter), 41
line-style (clé des lignes pointillées), 37
line-style (clé pour les lignes pointillées), 68
line-width (clé de \Block), 7

M
mathdots (extension), 33
max-width (sous-clé de « delimiters »), 72
multiplicity (clé de « custom-line »), 18

N
name

clé de \Block, 7
clé de \SubMatrix, 60
clé pour un environnement, 56

nb-rows (clé de \RowStyle), 28
{NiceArray}, 4
{NiceArrayWithDelims}, 55
{NiceMatrix}, 4
{NiceMatrixBlock}, 29, 71
\NiceMatrixLastEnv, 56
\NiceMatrixOptions, 1
{NiceTabular}, 4
{NiceTabular*}, 4
{NiceTabularX}, 31
no-cell-nodes, 56
nocolor, 28
Nœuds PGF/Tikz, 56–60
non-empty (clé de \TikzEveryCell), 46
Notes dans les tableaux, 47–51, 66
\NotEmpty, 16
notes (clé pour paramétrer les notes de

tableau), 48, 66
nullify-dots, 34

O
\OnlyMainNiceMatrix, 55
opacity

clé de \RowStyle, 28
clé de la commande \Block, 7
clé des commandes comme

\rowcolor, etc., 22

80

\OverBrace (commande du \CodeAfter
et du \CodeBefore), 45

P
para (sous-clé de « notes »), 49
parallelize-diags, 62
\pAutoNiceMatrix, 54
pgf-node-code, 57, 77
{pNiceArray}, 4
{pNiceMatrix}, 4
Pointillés (lignes en —), 33–40, 67

R
radius (clé des lignes pointillées), 37
\rectanglecolor (commande du \CodeBefore),

22
renew-dots, 36
renew-matrix, 36
\resetcolorseries (commande de xcolor), 25
respect-arraystretch (clé de \Block), 8
respect-blocks (clé de \rowcolors du

\CodeBefore), 23
restart (clé de \rowcolors du \CodeBefore), 23
\right : utilisé par nicematrix

pour des délimiteurs
dans les préambules, 40

right-margin, 58
right-shorten (clé de \OverBrace et

\UnderBrace), 45
right-xshift (clé de \SubMatrix), 43
\rotate, 26, 28, 53
rounded-corners

clé de \Block, 7
clé de \RowStyle, 28
clé de {NiceTabular}, 51

\rowcolor
commande du \CodeBefore, 66
commande du \CodeBefore, 22
commande en tableau, 26, 74

rowcolor (clé de \RowStyle), 28
\rowcolors (commande du \CodeBefore), 22
\rowlistcolors (commande du \CodeBefore),

22
\RowStyle, 28
rules (clé pour un environnement), 14, 66

S
S (les colonnes S de siunitx), 26, 52
sep-color (clé de « custom-line »), 18
short-caption, 46
shorten (clé des lignes pointillées), 37
shorten-end (clé des lignes pointillées), 37
shorten-start (clé des lignes pointillées), 37
\ShowCellNames (commande du \CodeAfter

et du \CodeBefore), 52
siunitx (extension), 52
slim (clé de \SubMatrix), 43
small (clé pour un environnement), 53
{smallmatrix} (environnement de amsmath), 53

standard-cline, 14
start (clé pour les filets), 21
style (sous-clé de « notes »), 49, 66
sub-matrix (clé de \CodeAfter, avec sous-clés),

41
\SubMatrix (commande du \CodeAfter

et du \CodeBefore), 42, 60, 72, 76

T
\tabularnote, 47, 66
tabularnote (clé de {NiceTabular}), 48
{TabularNote}, 48
tabularx (extension), 31
Tagging Project, 64
tcolorbox (extension), 65
threeparttable (extension), 51
TikZ (utilisation avec nicematrix), 56
\TikzEveryCell (commande du \CodeAfter

et du \CodeBefore), 46
tikz

clé de \Block, 7, 64
clé de « borders » de \Block, 7, 70
clé de « custom-line », 19

total-width (clé de « custom-line »), 19
transparent (clé de \Block), 8, 65

U
\UnderBrace (commande du \CodeAfter

et du \CodeBefore), 45

V
V (les colonnes V de varwidth), 30, 57
v-center (clé de \Block)), 11
varwidth (extension), 30, 57
\VAutoNiceMatrix, 54
\vAutoNiceMatrix, 54
\Vbrace, 39
\Vdots, 33
\Vdotsfor, 35
vlines, voir Filets

clé de \Block, 7
clé de \SubMatrix, 43
clé pour un environnement, 15

vlines-in-sub-matrix, 73
{VNiceArray}, 4
{vNiceArray}, 4
{VNiceMatrix}, 4
{vNiceMatrix}, 4

W
width

clé de {NiceTabular}, 31
sous-clé de « rules », 14

X
X (les colonnes X), 31
xdots (et ses sous-clés), 33
xshift (clé de \SubMatrix), 43

Y
yshift (clé de \OverBrace et \UnderBrace), 45

81

Autre documentation

Le document nicematrix.pdf (fourni avec l’extension nicematrix) contient une traduction anglaise
de la documentation ici présente ainsi qu’un historique des versions.
Le document nicematrix-code.pdf (fourni également avec l’extension nicematrix) contient le code
LaTeX commenté (à partir du fichier nicematrix-code.dtx).

Le développement de l’extension nicematrix se fait sur le dépôt GitHub suivant :
https://github.com/fpantigny/nicematrix

Les versions successives du fichier nicematrix.sty fournies par TeX Live sont également disponibles
sur le serveur svn de TeX Live :
www.tug.org/svn/texlive/trunk/Master/texmf-dist/tex/latex/nicematrix/nicematrix.sty

82

	Les environnements de cette extension
	L'espace vertical entre les rangées
	La clé baseline
	Les blocs
	Cas général
	Les blocs mono-colonne
	Les blocs mono-rangée
	Les blocs mono-case
	Positionnement horizontal du contenu des blocs
	Positionnement vertical du contenu des blocs
	 \\ et & dans les blocs

	Les filets horizontaux et verticaux
	Quelques différences avec les environnements classiques
	Les filets verticaux
	La commande \cline

	L'épaisseur et la couleur des filets
	Les outils de nicematrix pour tracer des filets
	Les clés hlines et vlines
	Les clés hvlines et hvlines-except-borders
	Les coins (vides)
	La commande \diagbox
	Commandes pour filets personnalisés

	Les couleurs de fond des rangées et des colonnes
	Utilisation de colortbl
	Les outils de nicematrix dans le \CodeBefore
	Outils de coloriage en tableau
	La couleur spécial «nocolor»

	La commande \RowStyle
	La largeur des colonnes
	Techniques de base
	Les colonnes V de varwidth
	Les colonnes X

	Les rangées et colonnes extérieures
	Les lignes en pointillés continues
	L'option xdots/nullify
	Les commandes \Hdotsfor et \Vdotsfor
	Comment créer les lignes en pointillés de manière transparente
	Les labels des lignes en pointillés
	Personnalisation des lignes en pointillés
	Les lignes pointillées et les filets
	Les commandes \Hbrace et \Vbrace

	Délimiteurs dans le préambule de l'environnement
	Le \CodeAfter
	La commande \line dans le \CodeAfter
	La commande \SubMatrix dans le \CodeAfter (et le \CodeBefore)
	Les commandes \OverBrace et \UnderBrace dans le \CodeAfter
	La commande \TikzEveryCell dans le \CodeAfter

	Les légendes et les notes dans les tableaux
	La légendes des tableaux
	Les notes de pied de page
	Les notes de tableaux
	Personnalisation des notes de tableau
	Utilisation de {NiceTabular} avec threeparttable

	Autres fonctionnalités
	La clé rounded-corners
	Commande \ShowCellNames
	Utilisation du type de colonne S de siunitx
	Type de colonne par défaut dans {NiceMatrix}
	La commande \rotate
	L'option small
	\AutoNiceMatrix et les compteurs iRow et jCol
	L'option light-syntax
	Couleur des délimiteurs
	L'environnement {NiceArrayWithDelims}
	La commande \OnlyMainNiceMatrix

	Utilisation de TikZ avec nicematrix
	Les nœuds correspondant aux contenus des cases
	La clé pgf-node-code
	Les colonnes V de varwidth

	Les «nœuds moyens» et les «nœuds larges»
	Les nœuds indiquant la position des filets
	Les nœuds correspondant aux commandes \SubMatrix

	API pour les développeurs
	Remarques techniques
	Lignes diagonales
	Les cases «vides»
	L'option exterior-arraycolsep
	Incompatibilités
	Compatibilité avec le Tagging Project de LaTeX

	Exemples
	Utilisation de la clé «tikz» de la commande \Block
	Utilisation avec tcolorbox
	Notes dans les tableaux
	Lignes en pointillés
	Des lignes pointillées qui ne sont plus pointillées
	Lignes en tiretés
	Empilements de matrices
	Comment surligner les cases d'une matrice
	Utilisation de \SubMatrix dans le \CodeBefore
	Un tableau triangulaire

	Index

