The 1tshipout documentation®

Frank Mittelbach, BTEX Project Team
October 31, 2025

Contents

1 Introduction 1
1.1 Overloading the \shipout primitive 2
1.2 Provided hooks 3
1.3 Legacy BKTEX commands 4
1.4 Special commands for use inside the hooks 5
1.5 Provided LuaTgX callbacks 5
1.6 Information counters. 6
1.7 Debugging shipout code oo 6

2 Emulating commands from other packages 7
2.1 Emulating atbegshi. o 7
2.2 Emulating everyshi o 8
2.3 Emulating atenddvi 8
2.4 Emulating everypageo 8

Index 9

1 Introduction

The code provides an interface to the \shipout primitive of TEX which is called when
a finished pages is finally “shipped out” to the target output file, e.g., the .dvi or .pdf
file. A good portion of the code is based on ideas by Heiko Oberdiek implemented in his
packages atbegshi and atenddvi even though the interfaces are somewhat different.!

*This file has version v1.0p dated 2025/09/23, © IATEX Project.
1Heiko’s interfaces are emulated by the kernel code, if a document requests his packages, so older
documents will continue to work.

\shipout

\RawShipout

\ShipoutBox
\1_shipout_box

1.1 Overloading the \shipout primitive

With this implementation TEX’s shipout primitive is no longer available for direct use.
Instead \shipout is running some (complicated) code that picks up the box to be shipped
out regardless of how that is done, i.e., as a constructed \vbox or \hbox or as a box
register.

It then stores it in a named box register. This box can then be manipulated through
a set of hooks after which it is shipped out for real.

Each shipout that actually happens (i.e., where the material is not discarded for one
or the other reason) is recorded and the total number is available in a readonly variable
and in a BTEX counter.

This command implements a simplified shipout that bypasses the foreground and back-
ground hooks, e.g., only shipout/firstpage and shipout/lastpage are executed and
the total shipout counters are incremented.

The command doesn’t use \ShipoutBox but its own private box register so that it
can be used inside of shipout hooks to do some additional shipouts while already in the
output routine with the current page being stored in \ShipoutBox. It does have access
to \ShipoutBox if it is used in shipout/before (or shipout/after) and can use its
content.

It is safe to use it in shipout/before or shipout/after but not necessarily in the
other shipout/... hooks as they are intended for special processing.

This box register is called \ShipoutBox (alternatively available via the L3 name \1_-
shipout_box).

This box is a “local” box and assignments to it should be done only locally. Global
assignments (as done by some packages with older code where this is box is known as
255) may work but they are conceptually wrong and may result in errors under certain
circumstances.

During the execution of shipout/before this box contains the accumulated ma-
terial for the page, but not yet any material added by other shipout hooks. During
execution of shipout/after, i.e., after the shipout has happened, the box also contains
any background or foreground material.

Material from the hooks shipout/firstpage or shipout/lastpage is not included
(but only used during the actual shipout) to facilitate reuse of the box data (e.g.,
shipout/firstpage material should never be added to a later page of the output).

\1_shipout_box_ht_dim
\1_shipout_box_dp_dim
\1_shipout_box_wd_dim

\1_shipout_box_ht_plus_dp_dim

The shipout box dimensions are available in the L3 registers \1_shipout_box_ht_dim,
etc. (there are no IATEX 2¢ names).” These variables can be used inside the hook code
for shipout/before, shipout/foreground and shipout/background if needed.

2Might need changing, but HO’s version as strings is not really helpful I think).

shipout/before
shipout/after
shipout/foreground
shipout/background
shipout/firstpage
shipout/lastpage

1.2 Provided hooks

The code for \shipout offers a number of hooks into which packages (or the user) can
add code to support different use cases. These are:

shipout/before This hook is executed after the finished page has been stored in
\ShipoutBox / \1_shipout_box). It can be used to alter that box content or
to discard it completely (see \DiscardShipoutBox below).

You can use \RawShipout inside this hook for special use cases. It can make use of
\ShipoutBox (which doesn’t yet include the background and foreground material).

Note: It is not possible (or say advisable) to try and use this hook to typeset
material with the intention to return it to main vertical list, it will go wrong and
give unexpected results in many cases—for starters it will appear after the current
page not before or it will vanish or the vertical spacing will be wrong!

shipout/background This hook adds a picture environment into the background of the
page with the (0,0) coordinate in the top-left corner using a \unitlength of 1pt.

It should therefore only receive \put commands or other commands suitable in a
picture environment and the vertical coordinate values would normally be nega-
tive.

Technically this is implemented by adding a zero-sized \hbox as the very first item
into the \ShipoutBox containing that picture environment. Thus the rest of the
box content will overprint what ever is typeset by that hook.

shipout/foreground This hook adds a picture environment into the foreground of the
page with the (0,0) coordinate in the top-left corner using a \unitlength of 1pt.

Technically this is implemented by adding a zero-sized \hbox as the very last item
into the \ShipoutBox and raising it up so that it still has its (0,0) point in the
top-left corner. But being placed after the main box content it will be typeset later
and thus overprints it (i.e., is in the foreground).

shipout This hook is executed after foreground and/or background material has been
added, i.e., just in front of the actual shipout operation. Its purpose is to allow
manipulation of the finalized box (stored in \ShipoutBox) with the extra material
also in place (which is not yet the case in shipout/before).

It cannot be used to cancel the shipout operation via \DiscardShipoutBox (that
has to happen in shipout/before, if desired!

shipout/firstpage The material from this hook is executed only once at the very be-
ginning of the first output page that is shipped out (i.e., not discarded at the last
minute). It should only contain \special or similar commands needed to direct
post processors handling the .dvi or .pdf output.?

This hook is added to the very first page regardless of how it is shipped out (i.e.,
with \shipout or \RawShipout).

3In IATEX2¢ that was already existing, but implemented using a box register with the name
\@begindvibox

\AtBeginDvi
\AtEndDvi

shipout/lastpage The corresponding hook to add \specials at the very end of the
output file. It is only executed on the very last page of the output file — or rather
on the page that EXTEX believes is the last one. Again it is executed regardless of
the shipout method.

It may not be possible for I¥TEX to correctly determine which page is the last one
without several reruns. If this happens and the hook is non-empty then ETEX will
add an extra page to place the material and also request a rerun to get the correct
placement sorted out.

shipout/after This hook is executed after a shipout has happened. If the shipout box
is discarded this hook is not looked at.

You can use \RawShipout inside this hook for special use cases and the main
\ShipoutBox is still available at this point (but in contrast to shipout/before
it now includes the background and foreground material).

Note: Just like shipout/before this hook is not meant to be used for adding
typeset material back to the main vertical list—it might vanish or the vertical
spacing will be wrong!

As mentioned above the hook shipout/before is executed first and can manipulate
the prepared shipout box stored in \ShipoutBox or set things up for use in \write
during the actual shipout. It is even run if there was a \DiscardShipoutBox request in
the document.

The other hooks (except shipout and shipout/after) are added inside hboxes to
the box being shipped out in the following order:

shipout/firstpage only on the first page
shipout/background

(boxed content of \ShipoutBox)

shipout/foreground

shipout/lastpage only on the last page

If any of the hooks has no code then the corresponding box is added at that point.
Once the (page) box has got the above extra content it can again be manipulated
using the shipout hook and then is shipped out for real.
Once the (page) box has been shipped out the shipout/after hook is called (while
you are still inside the output routine). It is not called if the shipout box was discarded.
In a document that doesn’t produce pages, e.g., only makes \typeouts, none of the
hooks are ever executed (as there is no \shipout) not even the shipout/lastpage hook.
If \RawShipout is used instead of \shipout then only the hooks shipout/firstpage
and shipout/lastpage are executed (on the first or last page), all others are bypassed.

1.3 Legacy EKTEX commands

\AtBeginDvi {(code)}

\AtBeginDvi is the existing IATEX 2¢ interface to fill the shipout/firstpage hook. This
is not really a good name as it is not just supporting .dvi but also .pdf output or .xdv.
\AtEndDvi is the counterpart that was not available in the kernel but only through
the package atenddvi. It fills the shipout/lastpage hook.
Neither interface can set a code label but uses the current default label.

\DiscardShipoutBox
\shipout_discard:

pre_shipout_filter

As these two wrappers have been available for a long time we continue offering them
(but not enhancing them, e.g., by providing support for code labels).

For new code we strongly suggest using the high-level hook management commands
directly instead of “randomly-named” wrappers. This will lead to code that is easier to
understand and to maintain and it also allows you to set code labels if needed.

For this reason we do not provide any other “new” wrapper commands for the above
hooks in the kernel, but only keep the existing ones for backward compatibility.

1.4 Special commands for use inside the hooks

\AddToHookNext {shipout/before} {...\DiscardShipoutBox...}

The \DiscardShipoutBox declaration (L3 name \shipout_discard:) requests that on
the next shipout the page box is thrown away instead of being shipped to the .dvi or
.pdf file.

Typical applications wouldn’t do this unconditionally, but have some processing logic
that decides to use or not to use the page.

Note that if this declaration is used directly in the document it may depend on the
placement to which page it applies, given that IXTEX output routine is called in an asyn-
chronous manner! Thus normally one would use this only as part of the shipout/before
code.

Todo: Once we have a new mark mechanism available we can improve on that
and make sure that the declaration applies to the page that contains it — not
done (yet)

\DiscardShipoutBox cannot be used in any of the shipout/... hooks other than
shipout/before.

In the atbegshi package there are a number of additional commands for use inside
the shipout/before hook. They should normally not be needed any more as one can
instead simply add code to the hooks shipout/before, shipout, shipout/background
or shipout/foreground.? If atbegshi gets loaded then those commands become available
as public functions with their original names as given below.

1.5 Provided LuaTEX callbacks

Under LuaTgX the pre_shipout_filter Lua callback is provided which gets called di-
rectly after the shipout hook, immediately before the shipout primitive gets invoked.
The signature is

function(<node> head)
return true
end

The head is the list node corresponding to the box to be shipped out. The return value
should always be true.

4If that assumption turns out to be wrong it would be trivial to change them to public functions
(right now they are private).

\ReadonlyShipoutCounter
\g_shipout_readonly_int

totalpages
\g_shipout_totalpages_int

\PreviousTotalPages

\DebugShipoutsOn
\DebugShipouts0ff
\shipout_debug_on:
\shipout_debug_off:

1.6 Information counters

\ifnum\ReadonlyShipoutCounter=. ..

\int_use:N \g_shipout_readonly_int % expl3 usage

This integer holds the number of pages shipped out up to now (including the one to be
shipped out when inside the output routine). More precisely, it is incremented only after
it is clear that a page will be shipped out, i.e., after the shipout/before hook (because
that might discard the page)! In contrast shipout/after sees the incremented value.

Just like with the page counter its value is only accurate within the output rou-
tine. In the body of the document it may be off by one as the output routine is called
asynchronously!

Also important: it must not be set, only read. There are no provisions to prevent
that restriction, but if you manipulate it, chaos will be the result. To emphasize this
fact it is not provided as a KTEX counter but as a TEX counter (i.e., a command), so
\Alph{\ReadonlyShipoutCounter} etc, would not work.

\arabic{totalpages}
\int_use:N \g_shipout_totalpage_int % expl3 usage
In contrast to \ReadonlyShipoutCounter, the totalpages counter is a IMTEX counter
and incremented for each shipout attempt including those pages that are discarded for
one or the other reason. Again shipout/before sees the counter before it is incremented.
In contrast shipout/after sees the incremented value.

Furthermore, while it is incremented for each page, its value is never used by KETEX.
It can therefore be freely reset or changed by user code, for example, to additionally
count a number of pages that are not build by IXTEX but are added in a later part of the
process, e.g., cover pages or picture pages made externally.

Important: as this is a page-related counter its value is only reliable inside the output
routine!

\PreviousTotalPages

Command that expands to the number of total pages from the previous run. If there was
no previous run or if used in the preamble it expands to 0. Note that this is a command
and not a counter, so in order to display the number in, say, Roman numerals you have
to assign its value to a counter and then use \Roman on that counter.

1.7 Debugging shipout code

\DebugShipoutsOn

Turn the debugging of shipout code on or off. This displays changes made to the shipout
data structures.

Todo: This needs some rationalizing and may not stay this way.

2 Emulating commands from other packages

The packages in this section are no longer necessary, but as they are used by other
packages, they are emulated when they are explicitly loaded with \usepackage or
\RequirePackage.

Please note that the emulation only happens if the package is explicitly requested,
i.e., the commands documented below are not automatically available in the ITEX kernel!
If you write a new package we suggest to use the appropriate kernel hooks directly instead
of loading the emulation.

2.1 Emulating atbegshi

\AtBeginShipoutUpperLeft \AddToHook {shipout/before} {...\AtBeginShipoutUpperLeft{(code)}...}
\AtBeginShipoutUpperLeftForeground

This adds a picture environment into the background of the shipout box expecting
(code) to contain picture commands. The same effect can be obtained by simply using
kernel features as follows:

\AddToHook{shipout/background}{(code)}

There is one technical difference: if \AtBeginShipoutUpperLeft is used several times
each invocation is put into its own box inside the shipout box whereas all (code) going
into shipout/background ends up all in the same box in the order it is added or sorted
based on the rules for the hook chunks.

\AtBeginShipoutUpperLeftForeground is similar with the difference that the
picture environment is placed in the foreground. To model it with the kernel func-
tions use the hook shipout/foreground instead.

\AtBeginShipoutAddToBox \AddToHook {shipout/before} {...\AtBeginShipoutAddToBox{(code)}...}
\AtBeginShipoutAddToBoxForeground

These work like \AtBeginShipoutUpperLeft and \AtBeginShipoutUpperLeftForeground
with the difference that (code) is directly placed into an \hbox inside the shipout box
and not surrounded by a picture environment.

To emulate them using shipout/background or shipout/foreground you may have
to wrap (code) into a \put statement but if the code is not doing any typesetting just
adding it to the hook should be sufficient.

\AtBeginShipoutBox This is the name of the shipout box as atbegshi knows it.

\AtBeginShipoutOriginalShipout

This is the name of the \shipout primitive as atbegshi knows it. This bypasses all the
mechanisms set up by the IXTEX kernel and there are various scenarios in which it can
therefore fail. It should only be used to run existing legacy atbegshi code but not in
newly developed applications.

The kernel alternative is \RawShipout which is integrated with the KTEX mech-
anisms and updates, for example, the \ReadonlyShipoutCounter counter. Please use
\RawShipout for new code if you want to bypass the before, foreground and background
hooks.

\AtBeginShipoutInit

\AtBeginShipout
\AtBeginShipoutNext

\AtBeginShipoutFirst
\AtBeginShipoutDiscard

\EveryShipout

\AtNextShipout

\AddEverypageHook

\AddThispageHook

By default atbegshi delayed its action until \begin{document}. This command was
forcing it in an earlier place. With the new concept it does nothing.

\AtBeginShipout{(code)} = \AddToHook{shipout/before}{(code)}
\AtBeginShipoutNext{(code)} = \AddToHookNext{shipout/before}{(code)}

This is equivalent to filling the shipout/before hook by either using \AddToHook or
\AddToHookNext, respectively.

The atbegshi names for \AtBeginDvi and \DiscardShipoutBox.

2.2 Emulating everyshi

The everyshi package is providing commands to run arbitrary code just before the shipout
starts. One point of difference: in the new shipout hooks the page is available as
\ShipoutBox for inspection of change, one should not manipulate box 255 directly inside
shipout/before, so old code doing this would change to use \ShipoutBox instead of
255 or \Q@cclv.

\EveryShipout{(code)} = \AddToHook{shipout/before}{(code)}

\AtNextShipout{(code)} = \AddToHookNext{shipout/before}{(code)}

However, most use cases for everyshi are attempts to put some picture or text into
the background or foreground of the page and that can be done today simply by using
the shipout/background and shipout/foreground hooks without any need to coding.

2.3 Emulating atenddvi

The atenddvi package implemented only a single command: \AtEndDvi and that is now
available out of the box so the emulation makes the package a no-op.

2.4 Emulating everypage

This package patched the original \@begindvi hook and replaced it with its own version.
Its functionality is now covered by the hooks offered by the kernel so that there is no
need for such patching any longer.

\AddEverypageHook{(code)} =
\AddToHook{shipout/background}{\put (1in,-1in){(code)}}

\AddEverypageHook is adding something into the background of every page at a position
of lin to the right and lin down from the top left corner of the page. By using the
kernel hook directly you can put your material directly to the right place, i.e., use other
coordinates in the \put statement above.

\AddThispageHook{({code)} =
\AddToHookNext{shipout/background}{\put (1in,-1in){(code)}}

The \AddThispageHook wrapper is similar but uses \AddToHookNext.

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

\AddEverypageHook
\AddThispageHook

\AddToHook
\AddToHookNext
\Alph
\arabic
\AtBeginDvi
\AtBeginShipout
\AtBeginShipoutAddToBox
\AtBeginShipoutAddToBoxForeground
\AtBeginShipoutBox
\AtBeginShipoutDiscard
\AtBeginShipoutFirst
\AtBeginShipoutInit

\AtBeginShipoutNext

\AtBeginShipoutOriginalShipout
\AtBeginShipoutUpperLeft
\AtBeginShipoutUpperLeftForeground

\AtEndDvi
\AtNextShipout
D
\DebugShipoutsOff
\DebugShipoutsOn
\DiscardShipoutBox
E
\EveryShipout
H
\hbox
I
\ifnum
int commands:
\int_use:N
P
pre commands:
pre_shipout_filter
\PreviousTotalPages
\PUE © oo
R

\RawShipout

\ReadonlyShipoutCounter
\RequirePackage
\Roman

\shipout
shipout commands:
\1_shipout_box

\1_shipout_box_dp_dim
\1_shipout_box_ht_dim

\1_shipout_box_ht_plus_dp_dim
\1_shipout_box_wd_dim
\shipout_debug_off:
\shipout_debug_on:
\shipout_discard:
\g_shipout_readonly_int
\g_shipout_totalpage_int
\g_shipout_totalpages_int
shipout/after
shipout/background
shipout/before
shipout/firstpage
shipout/foreground
shipout/lastpage
\ShipoutBox
\special,
T
TEX and ETEX 2 commands:
\@begindvi
\@begindvibox
\N@CClV ...
totalpages
\typeout
U
\unitlength
\usepackagec.ciio...
\%
\VbOX . ..
\\%
\write L,

	Contents
	1 Introduction
	1.1 Overloading the \shipout primitive
	1.2 Provided hooks
	1.3 Legacy LaTeX commands
	1.4 Special commands for use inside the hooks
	1.5 Provided LuaTeX callbacks
	1.6 Information counters
	1.7 Debugging shipout code

	2 Emulating commands from other packages
	2.1 Emulating atbegshi
	2.2 Emulating everyshi
	2.3 Emulating atenddvi
	2.4 Emulating everypage

	Index
	A
	D
	E
	H
	I
	P
	R
	S
	T
	U
	V
	W

